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Introduction

• Theories of fundamental interactions (Gravity, YM, Strings,

M-Theory, Higher-spin theories . . . ) are inevitably gauge

theories. We are mostly intrested in Lagrangian gauge theoires!

Powerful Batalin-Vilkovisky (BV) formalism is available.

• Mathematical setup to handle local gauhge theories is that of

jet-bundles. BV formalism on jet-bundles: Henneaux, Barnich,

Brandt,........ Applies to variational PDEs. Moreover, analyz-

ing local BRST cohomology brings us beyond jet-bundles.

E.g. transgression formulas, generalized connections, etc.

Stora, Baulieu, Brandt.....



• Both from the fundamental perspective and applications in

gravity, asymptotic symmetries, holography, higher spin gauge

theories, string field theory, etc. it is highly desierable to de-

velop a version of BV comprising on-shell description (BV

beyond jet-bundles). In the usual PDE theory an anlog is

the Vinogradov approach.

• Full-scale generalization of BV beyond jet-bundles setup is

not straitforward

- BV is desgined for Lagrangian systems (defined on jet-

bundles)

- How (BV) Lagrangian can be encoded in on-shell terms?

Even for non-gauge PDEs this is an open problem. Can

be seen as an invariant version of the invers problem of the

calculus of variations.



• It turns out that a bridge between BV formalism and the in-

variant geometrical approach to PDEs becomes manifest us-

ing the Alexandrov-Kontsevich-Schwartz-Zaboronsky 1994 (AKSZ)-

like framework. This was originally proposed as an elegant

BV formulation of topological models. Somewhat similar ap-

proach (in terms of free differential algebras (FDA)) was in-

dependently developped by M.Vasiliev in the context of higher-

spin theories. It is also worth mentioning FDA approach to

supergravity by D’Auria, Fre,....



Lagrangians and locality

Ignore locality and consider field-histories as finite-dim space with
coordinates φi. Functions Ei(φ) define a stationary surf. Ei = 0.

Assuming regularity pick independent Tα among Ei (Tα = 0
define the same surface). Then the following action:

S = kαβT
αTβ

define equivalent EOMs. If we disregard locality, global geome-
try issues and irregular situations all equations are Lagrangian.
In the local setting “invers problem of the calculus of variations”.

Lagrangians are needed to define quantum theory and the La-
grangian formalism is extremely useful: Noether theorem, con-
sistent interactions, and nearly all QFT methods are essentially
lagrangian.

Standard setup: jet-bundle apporoach



PDEs and jet-bundles

Fiber-bundle F → X (global aspects are not discussed):

base space (independent variables or space-time coordinates):

xa, a = 1, . . . , n.

Fiber: (dependent variables or fields φi)

Jet-bundle:

A point of Jk is a pair (p, [σ]), where [σ] is an equivalence class

of sections σ : X → F such that their partial derivatives at p

coincide to order k:

∂a1 . . . ∂alφ(x))|p = (∂a1 . . . ∂alφ
′(x))|p, l6 k



One can use xi, and values of derivatives as coordinates:

J0(F) : xa, φi, J1(F) : xa, φi, φia , J2(F) xa, φi, φia, φ
i
ab , . . .

Projections:

. . .→ JN(F)→ JN−1(F)→ . . .→ J1(F)→ J0(F) = F

Useful to work with J := J∞.

A local function is the one that depends on only a finite number

of the coordinates.

A local function f = f(x, φ, φa, φab . . .) can be evaluated on a

section σ : X → F as

f(σ) := f(x, σ∗(φi), ∂aσ∗(φi), . . .)



Total derivative: (imitates the action of standard partial deriva-

tive)

Da :=
∂

∂xa
+ φia

∂

∂φi
+ φiab

∂

∂φia
+ . . .

Main property:

∂a(f(σ)) = (Daf)(σ) .

Total derivatives generate Cartan distribution.

Similarly one defines local forms.

Space-time differentials dxa. Horizontal differential:

dh ≡ dxaDa , d2
h = 0 .



PDE theory in terms of jet-bundle

A system of partial differential equations (PDE) is a collection

of local functions on J

Eµ[φ, x] .

The equation manifold (stationary surface): E ⊂ J singled out

by: (prolonged equation)

Da1 . . . DalEµ = 0 , l = 0,1,2, . . .

understood as the algebraic equations in J .

Da are tangent to E and hence restricts to E. So do the differ-

entials dh and dv. Da|E determine a dim-n involutive distribution

on E – Cartan distribution.



PDEs beyond jet-bundles

Definition: [Vinogradov] PDE is a manifold E equipped with an

involutive Cartan distribution C ⊂ TE.
In plain terms: PDE is a stationary surface with an extra struc-

ture.

+ some regularity and general technical assumptions.

PDEs are isomorphic when the respective distributions are.

For n = 0 PDEs are just usual manifolds.



BV beyond jet-bundles (EOM level)

Nonlagrangian version of BV: forget about symplectic structure

and keep dh, BRST differential s, and ghost degree.

Barnich, M.G., Semikhatov, Tipunin 2004, Lyakhovich, Sharapov, 2004...

Gauge PDE: BV-BRST extension of the notion of PDE. Exam-

ples were in the literature (in the context of topological models

or higher spin theories) the general concept appeared only in Bar-

nich, M.G. 2010 under the name of “parent formalism”

Idea: reformulate BV as an AKSZ sigma model. In the case

of PDE the minimal equivalent formulation of this type has the

equation manifold as a target space.

More refined and geometric definition of gauge PDE was in M.G.,

Kotov, 2019.



Q-manifolds

Def. Q-manifold (M,Q) is a Z-graded supermanifold M equipped

with the odd nilpotent vector field of degree 1, i.e.

Q2 = 0 , |Q| = 1 , gh(Q) = 1

Example: Odd tangent bundle: (T [1]X, dX). If θa are coordinates

on the fibres of T [1]M in the basis
∂

∂xa
:

dX := θa
∂

∂xa

Example: CE complex (g[1], Q). If g is a Lie algebra then g[1] is

equipped with Q structure. If cα are (ghosts) i.e. coordinates on

g[1] in the basis eα then

Q =
1

2
cαcβU

γ
αβ

∂

∂cγ
, [eα, eβ] = U

γ
αβeγ



Example: (V [1](M), Q) where V (M) Lie algebroid. Indeed generic

Q of degree 1 locally reads as:

Q = cαRα −
1

2
cαcβU

γ
αβ(z)

∂

∂cγ

Rα gives anchor, Uγαβ bracket, Q2 = 0 encodes compatibility.

Gauge PDE in n = 0 (trivial Cartan distribution) is a Q-manifold

(E, Q) that is equivalent to a nonnegatively graded one.

If only ghost degree 0,1 variables are present then it is just a Lie

algebroid.

Important feature: although this is an intrinsic definition (E is

not embedded into some “jet space”) there are infinitely many

Q-manifolds representing the same gauge PDE.



Equivalence of Q-manifolds:
Idea: restrict to local analysis and suppose that (M,QM) can be
represented as a product Q-manifold:

M = N × T [1]V , QM = QN + dT [1]V V – graded space

then (M,QM) and (N,QN) are equivalent. Q-manifold of the
form (T [1]V, dT [1]V ) is caled contractible. In coordinates:

QM = QN + vα
∂

∂wα
, QN = qi(φ)

∂

∂φi
.

Often one can find a “minimal” equivalent Q-manifold (directly
related to minimal models of L∞ algebras).

In the context of gauge theories: wα, vα – are known as “gener-
alized auxiliary fields” Henneaux, 1990 (in the Lagrangian case).

Maps of Q-manifolds:
φ : (M1, Q1)→ (M2, Q2), φ∗ ◦Q2 = Q1 ◦ φ∗



Def. [Kotov, Strobl] Localy trivial bundle π : E →M of Q-manifolds

is called Q-bundle if π is a Q-map. Section σ : M → E is called

Q-section if it’s a Q-map.

In general, π : E →M is not a locally trivial Q-budle.

Indeed, although locally E ∼= M × F (product of manifolds) in

general Q 6= QF +QM .

Notion of equivalence extends to Q-bundles.



PDE as a Q-bundle

Consider PDE (EX , C), EX is a bundle πX : EX → X over space-

time X, C ⊂ TEX is a Cartan distribution generated by Da,

where xa are local coordinates on X. πX projects Da to
∂

∂xa
,

i.e. dπX(Da) =
∂

∂xa
.

Horizontal differential forms can be seen as functions on EX
extended to a bundle over T [1]X. Horizontal differential:

dh = θaDa (θa ≡ dxa)

defines a Q-structure on a Q-bundle π : (ET [1]X , dh)→ (T [1]X, dX)),

where dX = θa
∂

∂xa



This Q-bundle π : (ET [1]X , dh) → (T [1]X, dX)) encodes all the

information about the starting point PDE (EX , C).

For instance, solutions are Q sections. If ψA are local coordinates

on the fibres the section is parametrized by ψA(x) = σ∗(ψA)

Q-map condition dX ◦σ∗ = σ∗◦dh gives the usual coordinate form

of the solution condition:

∂

∂xa
ψA(x) = ΓAa (ψ(x), x) , dh = θaDa = θa(

∂

∂xa
+ ΓAa (ψ, x)

∂

∂ψA
)

also known as “unfolded” representation M.Vasiliev . In particu-

lar, fields of the unfolded form are coordinates on the equation

manifold (stationary surface).

Note that Q-bundles originating from PDEs are quite special: Z-

grading (ghost degree) originates from just the space-time form

degree (the only nonzero degree coordinates are θa).



Gauge PDEs

In terms of Q-bundles PDEs can be defined as Q-bundles over

T [1]X with horizontal Z-grading. The extension to the case of

gauge systems is surprisingly straitforward: just forget about hor-

izontality

Def. Gauge pre-PDE is a Q-bundle (ET [1]X , Q) over (T [1]X,dX)

Equivalence of Q-manifolds exends to Q-bundles over T [1]X, giv-

ing the notion of equivalent reduction and equivalence of gauge

pre-PDEs. Notion of gauge pre-PDE is too wide:

gauge PDE: equivalent to nonnegatively graded, realizable in

term of a jet-bundle in a regular way.



Equations of motion and gauge symmetries

Solutions: σ : T [1]X → ET [1]X is a solution if

dX ◦ σ∗ = σ∗ ◦Q

Gauge transformations:

δσ∗ = dX ◦ ε∗σ + ε∗σ ◦Q,

Gauge parameter: ε∗σ : C∞(ET [1]X)→ C∞(T [1]X),

gh(ε∗σ) = −1, ε∗σ(fg) = ε∗σ(f)σ∗(g)± σ∗(f)ε∗σ(g)

Gauge for gauge symmetries . . .



BV formulation (EOM level) as a gauge PDE

Fields ΨA (include genuine fields φi, ghosts cα, antighosts πµ,

antifields Pa, . . . ). Jet-bundle with coordinates ΨA
b1...

, xa, θa

Horizontal differential: dh = θaDa

BV-BRST differential s:

gh(s) = 1, s2 = 0, [dh, s] = 0

BV jet-bundle as a Q-bundle over T [1]X with Q = dh + s.

Formalism encodes BV as a particular case and hence all rea-

sonable gauge theories. Justifies definition. Can be regarded as

a BV beyond jet-bundles (at the level of equations of motion)



Example: Maxwell equation as a gauge PDE

Trivial bundle T [1]X ×M , Fiber coordinates:

C, gh(C) = 1 , Fa|b, Fa|b1b2, . . . Fa|b1...bl . . . gh(F...) = 0

Fa|b1...bl – irreducible tensors, symmetric in second group and

traceless. Q-structure: Stora, . . . , Brandt

Qxa = θa, Qθa = 0, QC =
1

2
Fabθ

aθb, QFa|b = θcFa|bc, . . .

Equations of motion (promoting C,F to fields σ∗(C) = Aa(x)θA,

σ∗(F...) = F...(x) M.Vasiliev

∂aAb − ∂bAa = Fa|b , ∂cFa|b = Fa|bc , . . .

taking a trace of the 2nd gives ηbc∂aFb|c = 0.



Reparametrization invariance and AKSZ sigma

models

Suppose that (ET [1]X , Q) is a locally trivial Q-bundles. Restrict
to local analysis. Then

(ET [1]X , Q) = (T [1]X, dX)× (F,QF )

Gauge PDEs of this type are known as AKSZ sigma models.

In higher dimension: local triviality = reparmetrization invari-
ance (in the context of BRST cohomology this was known as
a posibility to eliminate dh through change of variables, Brandt,

Dragon; Barnich, Brandt, Henneaux (1993)))

In particular, any reparametrization-invariant gauge theory (e.g.
gravity) can be locally represented as AKSZ sigma model Barnich,

M.G. 2010



Example: zero-curvature equation

Take ET [1]X = (T [1]X, dX) × (g[1], Q), where g is a Lie algbera

and Q is a CE differential seen as a vector field. Let Cα de-

note coordinates on g[1] then QCα = −1
2U

α
βγC

βCγ. Denoting

σ∗(Cα) = Aαa(x)θa we get

dX ◦ σ∗ = σ∗ ◦Q =⇒ dA+
1

2
[A,A] = 0

Gauge transformations:

δA = dε+ [A, ε]

Topological PDE (Nonlagrangian Chern-Simons). Finite-dim Q-

bundle. Example known from AKSZ.



Lagrangian formalism beyond jet-bundles.

Intrinsic action

Lagrangian induces presymplectic structure ω ∈
∧(n−1,2)(E) on

the equation manifold E.
Kijowski, Tulczyjew 1979, Crnkovic, Witten, 1987, Hydon 2005, Khavkine

2012, Alkalaev M.G. 2013, Sharapov 2016

Indeed, given a Lagrangian L ∈
∧n,0(J∞(F)) define χ̂ ∈

∧n−1,1(J∞(F)):

dvL = dvφ
iδ
ELL
δφi

− dhχ̂

Define χ = χ̂|E and ω = dvχ

dvω = dhω = 0

Generic ω on E satisfying the above is called a compatible presym-
plectic structure on E.



More generally, suppose PDE E is eqipped with a compatible ω.

It follows ω = d(χ+ l) for some χ ∈
∧n−1,1(E), l ∈

∧n,0(E). These

define a natural action functional on sections of E called intrinsic

action: MG, 2016

Sc[σ] =
∫
X
σ∗(χ+ l)

What this has to do with the PDE in question?

Sc doesn’t depend on fields in the kernel of ω. Assuming regular-

ity take a symplectic quotient. The resulting Lagrangian system

is weaker, E ⊂ Ec. For a class of systems containing YM, Gravity

etc. there exists ω such that Sc is equivalent to the standard

Lagrangian.

Counterexample: systems with degree zero differential conse-

quences, e.g. massive spin-2 system. M.G. Gritsaenko 2021



Example: scalar field

Lagrangian:

L =
1

2
ηabφaφb − V (φ)

E is coordinatized by xa, φ, φa, φab, . . . with φabc... traceless.

dhx
a = dxa , dhφ = dxaφa, , dhφa = dxb(φab −

1

n
ηab

∂V

∂φ
) , . . .

The presymplectic potential and 2-form:

χ = (dx)n−1
a φadvφ , ω = (dx)n−1

a dvφ
advφ

The Hamiltonian:

H = (dx)n(φaφ
a − L|E) =

1

2
φaφa + V (φ)

The intrinsic Larangian: Schwinger

Lc = (dx)n
(
φa(∂aφ−

1

2
φa)− V (φ)

)



Metric gravity

Einstein-Hilbert action

S =
∫
dnx
√
−g(R− 2Λ)

Coordinates on the stationary surf.: xµ, gµν, Γλµν + independent

derivatives of Γλµν. Presymplectic potential (schematically):

χ =
√
−g(Γρµν − “traces”)dvgµν(dx)n−1

ρ .

The intrinsic action concides with the familiar Palatini action:

SC[g,Γ]] =
∫
dnx
√
−g(∂ρgµν(Γρµν−

1

2
gρµΓ λν

λ −
1

2
gρνΓ λµ

λ +
1

2
gµνΓ λρ

λ −

−
1

2
gµνΓρλ λ)− ΓρµνΓνµρ + Γνµ µΓλ λν − 2Λ) .

M.G., Gritsaenko 2021



BV formalism beyond jet-bundles

Presymplectic structures on gauge PDEs

Def. Compatible presymplectic structure on gauge PDE (ET [1]X , Q)
is a vertical 2-form ω on ET [1]X satisfying:

dω = 0 , LQω = 0 , gh(ω) = n− 1

Here n = dimX and vertical forms are understood as equivalence
classes

Defines “Hamiltonian” (or, better, covariant BRST charge) via

iQω = dH , gh(H) = n

ω is directly related to the BV symplectic structure
n
ω extended

as ω =
n
ω+

n−1
ω + . . .

0
ω to be a cocycle of dh + s, i.e. Ldh+sω = 0.



Intrinsic BV action

ω defines action functional on the space of sections of (ET [1]X , Q, ω)

S[σ] =
∫
T [1]X

(σ∗(χ)(dX)− σ∗(H))

where χ is a presymplectic potential, i.e. ω = dχ. χ → χ + dρ
adds boundray term.

BV-like extension (just like in AKSZ). Supersection σ̂:

SBV [σ̂] =
∫
T [1]X

(σ̂∗(χ)(dX)− σ̂∗(H))

If e.g. gh(C) = 1 then σ∗(C) = Aa(x)θa while σ̂∗(C) =
0
Ca +

Aaθa +
2
ξabθ

aθb + . . . , In coordinates:

SBV [ψ] =
∫
dnxdnθ(χA(ψ(x, θ)θc

∂

∂xc
ψA(x, θ)−H(ψA(x, θ))



Interpretation? What this has to do with the gauge PDE in

question? Alkalaev, MG 2013, MG 2016, MG, Kotov, ...

Idea: assume ω regular and take a symplectic quotient. Does

not always work in a naive way in interesting cases.

Refined idea: locally, sections are fiber-valued functions, take:

Smaps(T [1]X,F ) = Smaps(X,M) , M = Smaps(Rn[1], F )

M is finite-dimensional provided F is. Natural lift of ω to M

ωM =
∫
dnθ ωAB(ψ(θ))dψA(θ) ∧ dψB(θ) , gh(ωM) = −1

Now assume that ωM is regular and take a symplectic quotient.

We have arrived at BV formulation! With BV symplectic struc-

ture ωM(dx)n and BV master action SBV !

M.G. Kotov, 2020; Dneprov, M.G. to appear



Example: Maxwell

Recall: ET [1]X = T [1]X ×M , Fiber coordinates:

C, gh(C) = 1 , F a|b, F a|b1b2, . . . F a|b1...bl . . . gh(F ...) = 0

Qxa = θa, Qθa = 0, QC =
1

2
F a|bθaθb, QF a|b = θcF

a|bc, . . .

indexes rised/lowered with Minkowski metric.

Presymplectic structure: Alkalaev, M.G. 2013; A. Sharapov 2017

ω = (θ)(n−2)
ab dF a|bdC ,

indexes rised/lowered with Minkowski metric
Intrinsic action (σ∗(C) = Aa(x)θa, σ∗(F a|b) = F a|b(x)):

S[σ] =
∫
dnx(∂aAb)F

a|b −
1

4
(F a|b)2



Presymplectic structure on supermaps gives correct BV form!

ωM = d
0
C ∧

2
F
a|b
ab + dAa ∧

1
F
a|b
b + d

0
F a|b ∧

2
Cab

Here:

σ̂∗(C) =
0
C(x) +Aa(x)θa +

1

2

2
Cab(x)θaθb . . .

σ̂∗(Fa|b) =
0
F a|b(x) +

1
F
a|b
c (x)θc +

1

2

2
F
a|b
cd (x)θcθd + . . .

Formal path integral:

Z =
∫
L
exp(

i

~
SBV )

where L comprise both usual gauge condition and a gauge condi-

tion for zero modes of ωM . No need to take symplectic quotient

explicitly! Analog of superfield formalism (known in AKSZ).



Example: Einstein gravity

Take F = iso(1,3)[1] with coordinates ea, ωab Alkalaev, M.G. 2013

χ =
1

2
εabcddω

abeced , σ = dωabdecεabcde
d

“Hamiltonian”

H = QAχA = −1

2
ωacω

cbεabcde
ced

Intrinsic action:

SC =
∫
χAdψ

A −H =
∫

(dωab + ωacω
cb)εabcde

ced

Familiar Cartan-Weyl action for 4d GR. Generalization to n > 2
and Λ 6= 0 is straightforward. Reduces to usual AKSZ represen-
tation for 3d GR.

Just like in the case of scalar defines full BV formulation on the
space of supermaps MG, Kotov, 2020



Conclusions

• Gauge PDEs – BV-BRST like extansions of standard PDEs.
Rather flexible and invariant formalism (includes usual BV at
EOM level as a particuar case.

• Explicitly relates metric and frame-like formalism. Can be
reagrded as a covariant hamiltonian formalism. In simple
cases reproduces De Donder-Weyl formulations.

• Gauge PDEs as geometric objects. Well suited to work with
diffeomorphims-invariant and topological models. Notion of
equivalence.

• All the ingredients of the BV formulation are naturally en-
coded in the graded presympletic structure on the gaueg
PDE.



• In the case of variational systems unifies Lagrangian and
Hamiltonian BRST formalism, cf. BV/BFV approach of Cat-

taneo et all.

• Gives an invariant approach to study boundary values of
gauge fields. In particular in the AdS/CFT correspondence
context. Bekaert, M.G. 2012. In particular, Fefferman-Graham
construction (and tractor calculus) can be seen as a certain
gauge PDE. M.G. 2012, M.G. Waldron 2011, Bekaert, M.G. Skvortsov

2017

• Sucessful applications in constructing new models of HS the-
ory, e.g. Type-B theory (AdS holographic dual to conformal
spinor on the boundary) M.G. Skvortsov 2018

• Recent construction of Lagrangians for AdS4 higher spin
gravity in terms of presymplectic AKSZ. Sharapov, Skvortsov

2020



• Minimal presymplectic BV formulation of conformal gravity

gives an alternative to Kaku et all, 1977 frame like formulation.

No artificial torsion-free constraint. Dneprov, M.G., to appear


