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Introduction

e Theories of fundamental interactions (Gravity, YM, Strings,
M-Theory, Higher-spin theories ...) are inevitably gauge
theories. We are mostly intrested in Lagrangian gauge theoires!
Powerful Batalin-Vilkovisky (BV) formalism is available.

e Mathematical setup to handle local gauhge theories is that of
jet-bundles. BV formalism on jet-bundles: Henneaux, Barnich,
Brandt,........ Applies to variational PDEs. Moreover, analyz-
ing local BRST cohomology brings us beyond jet-bundles.

E.g. transgression formulas, generalized connections, etc.
Stora, Baulieu, Brandt



e Both from the fundamental perspective and applications in
gravity, asymptotic symmetries, holography, higher spin gauge
theories, string field theory, etc. it is highly desierable to de-
velop a version of BV comprising on-shell description (BV
beyond jet-bundles). In the usual PDE theory an anlog is
the Vinogradov approach.

e Full-scale generalization of BV beyond jet-bundles setup is
not straitforward
- BV is desgined for Lagrangian systems (defined on jet-
bundles)
- How (BV) Lagrangian can be encoded in on-shell terms?
Even for non-gauge PDEs this is an open problem. Can
be seen as an invariant version of the invers problem of the
calculus of variations.



e It turns out that a bridge between BV formalism and the in-
variant geometrical approach to PDEs becomes manifest us-
ing the Alexandrov-Kontsevich-Schwartz-Zaboronsky 1994 (AKSZ)-
like framework. This was originally proposed as an elegant
BV formulation of topological models. Somewhat similar ap-
proach (in terms of free differential algebras (FDA)) was in-
dependently developped by M. vasiliev in the context of higher-
spin theories. It is also worth mentioning FDA approach to
supergravity by D’Auria, Fre,....



Lagrangians and locality

Ignore Iocality. and consider field-histories as finite-dim space with
coordinates ¢*. Functions E;(¢) define a stationary surf. E; = 0.

Assuming regularity pick independent T% among E; (T% = O
define the same surface). Then the following action:

S = kqgT*T"

define equivalent EOMSs. If we disregard locality, global geome-
try issues and irregular situations all equations are Lagrangian.
In the local setting “invers problem of the calculus of variations” .

Lagrangians are needed to define quantum theory and the La-
grangian formalism is extremely useful: Noether theorem, con-
sistent interactions, and nearly all QFT methods are essentially
lagrangian.

Standard setup: jet-bundle apporoach



PDEs and jet-bundles

Fiber-bundle F — X (global aspects are not discussed):
base space (independent variables or space-time coordinates):

wa' a = 1,...,n.
Fiber: (dependent variables or fields ¢)
Jet-bundle:

A point of J* is a pair (p,[0]), where [o] is an equivalence class
of sections o : X — F such that their partial derivatives at p

coincide to order k:

Oay - - 00 (x))p = (Bay - - - 00y (x))|p, 1<k



One can use z*, and values of derivatives as coordinates:
JUF): a%¢', JHF): 2%l g, JAF) 2t s bl
Projections:

o INFA) IR s TP S IR = F
Useful to work with 7 = J°°.

A local function is the one that depends on only a finite number
of the coordinates.

A local function f = f(x,¢,¢q, P4 --.) Can be evaluated on a
section o : X — F as

f(o) i= f(z,0%(8"),8a0™ ("), .. .)



Total derivative: (imitates the action of standard partial deriva-
tive)

Dq =

O 44

abagbz

Main property:

0a(f(0)) = (Daf)(o).
Total derivatives generate Cartan distribution.
Similarly one defines local forms.

Space-time differentials dxz®. Horizontal differential:

dn = dz®Da, d2=0.



PDE theory in terms of jet-bundle

A system of partial differential equations (PDE) is a collection
of local functions on J

Eule, x].

The equation manifold (stationary surface): & C J singled out
by: (prolonged equation)

Dgy...DgE)y, =0, [=0,1,2,...
understood as the algebraic equations in J.

D, are tangent to £ and hence restricts to £€. So do the differ-
entials dn and dy. Dg|g determine a dim-n involutive distribution
on £ — Cartan distribution.



PDEs beyond jet-bundles

Definition: [Vinogradov] PDE is a manifold £ equipped with an

involutive Cartan distribution C C TE.
In plain terms: PDE is a stationary surface with an extra struc-

ture.
+ some regularity and general technical assumptions.
PDEs are isomorphic when the respective distributions are.

For n = 0 PDEs are just usual manifolds.



BV beyond jet-bundles (EOM level)

Nonlagrangian version of BV: forget about symplectic structure
and keep dn, BRST differential s, and ghost degree.
Barnich, M.G., Semikhatov, Tipunin 2004, Lyakhovich, Sharapov, 2004...

Gauge PDE: BV-BRST extension of the notion of PDE. Exam-
ples were in the literature (in the context of topological models
or higher spin theories) the general concept appeared only in Bar-
nich, M.G. 2010 under the name of “parent formalism”

Idea: reformulate BV as an AKSZ sigma model. In the case
of PDE the minimal equivalent formulation of this type has the
equation manifold as a target space.

More refined and geometric definition of gauge PDE was in m.G.,
Kotov, 2019.



Q-manifolds

Def. Q-manifold (M, Q) is a Z-graded supermanifold M equipped
with the odd nilpotent vector field of degree 1, i.e.

Q°=0, |Q=1, gh(@ =1
Example: Odd tangent bundle: (T[1]X,dx). If 8% are coordinates

on the fibres of T'[1]M in the basis %:
X

0
dy = 0%
X oxo

Example: CE complex (g[1],@Q). If g is a Lie algebra then g[1] is
equipped with @ structure. If ¢ are (ghosts) i.e. coordinates on
g[1] in the basis ey then

Q= -cfur, = lea, eg] = Ugﬁefy



Example: (V[1](M), Q) where V(M) Lie algebroid. Indeed generic
) of degree 1 locally reads as:
— oap _ t oo Brry
Q = Ry QCCUB(Z)E?m
Rq gives anchor, U”B bracket, Q2 O encodes compatibility.

Gauge PDE in n = 0 (trivial Cartan distribution) is a Q-manifold
(€,Q) that is equivalent to a nonnegatively graded one.

If only ghost degree 0,1 variables are present then it is just a Lie
algebroid.

Important feature: although this is an intrinsic definition (& is
not embedded into some “jet space” ) there are infinitely many
@-manifolds representing the same gauge PDE.



Equivalence of Q-manifolds:
Idea: restrict to local analysis and suppose that (M, Q) can be
represented as a product @-manifold:

M = N x T[1]V, Qpm = QN +dppy  V — graded space

then (M,Q,;) and (N,Qpy) are equivalent. (@-manifold of the
form (T'[1]V, dT[l]V) is caled contractible. In coordinates:

Qv = QN + Uaa,ia , QN = qi(qﬁ)aii :

Often one can find a “minimal” equivalent Q-manifold (directly
related to minimal models of L algebras).

In the context of gauge theories: w®,v®* — are known as ‘gener-
alized auxiliary fields” Henneaux, 1990 (in the Lagrangian case).

Maps of ()-manifolds:
¢ (M1,Q1) = (M2,Q2), ¢*0Qa= Q100"



Def. [Kotov, Strobl] Localy trivial bundle 7w : E — M of QQ-manifolds
is called @Q-bundle if w is a Q-map. Section ¢ : M — E is called

Q-section if it's a @-map.

In general, m: E — M is not a locally trivial QQ-budle.
Indeed, although locally E = M x F (product of manifolds) in

general Q@ = Qr + Q-

Notion of equivalence extends to Q-bundles.



PDE as a @-bundle

Consider PDE (Ex,C), Ex is a bundle ny : Ex — X over space-

time X, C C TEx is a Cartan distribution generated by D,,

: s,
where x? are local coordinates on X. wyx projects D, to —

8 ox?

Horizontal dlfferentlal forms can be seen as functions on Ex
extended to a bundle over T[1]X. Horizontal differential:

dn = 6°Dy (6% = dz®)

defines a Q-structure on a @-bundle 7 : (Ep1)x,dn) — (T'[1]X,dx)),
0
ox?®

where dxy = 6¢



This @Q-bundle 7 : (ET[l]X,dh) — (T[1]X,dx)) encodes all the
information about the starting point PDE (Ex,C).

For instance, solutions are ) sections. If wA are local coordinates
on the fibres the section is parametrized by ¥4 (z) = o*(1p4)
Q-map condition dy oo™ = o*od}, gives the usual coordinate form
of the solution condition:

v @) =TAW@), D), dy=0"Da = 0" + T (W) 50
also known as “unfolded’” representation M.Vasiliev. In particu-
lar, fields of the unfolded form are coordinates on the equation
manifold (stationary surface).

Note that ()-bundles originating from PDEs are quite special: Z-
grading (ghost degree) originates from just the space-time form
degree (the only nonzero degree coordinates are 6%).



Gauge PDEs

In terms of -bundles PDEs can be defined as @Q-bundles over
T[1]X with horizontal Z-grading. The extension to the case of

gauge systems is surprisingly straitforward: just forget about hor-
izontality

Def. Gauge pre-PDE is a Q-bundle (ET[l]X,Q) over (T[1]X,dy)

Equivalence of Q-manifolds exends to Q-bundles over T'[1]X, giv-
ing the notion of equivalent reduction and equivalence of gauge
pre-PDEs. Notion of gauge pre-PDE is too wide:

gauge PDE: equivalent to nonnegatively graded, realizable in
term of a jet-bundle in a regular way.



Equations of motion and gauge symmetries

Solutions: o : T'[1]X — Ep[q)x Is a solution if
dxy oo =0 "0Q
Gauge transformations:
00" =dx oe; + €, 0Q,
Gauge parameter: €5 : C*°(Ep(q)x) = C(T[1]X),
gh(ey) = -1, e (fg) = ex(f)o™(g) £ o7 (fes(g)

Gauge for gauge symmetries . ..



BV formulation (EOM level) as a gauge PDE

Fields w4 (include genuine fields cbi, ghosts ¢, antighosts m,
antifields P, ...). Jet-bundle with coordinates Wil  z¢, 6°
Horizontal differential: d, = 0D,

BV-BRST differential s:

gh(s) =1, s°=0, [dn,s]=0
BV jet-bundle as a @Q-bundle over T[1]X with QQ = d, + s.

Formalism encodes BV as a particular case and hence all rea-
sonable gauge theories. Justifies definition. Can be regarded as
a BV beyond jet-bundles (at the level of equations of motion)



Example: Maxwell equation as a gauge PDE

Trivial bundle T[1]X x M, Fiber coordinates:

C, gh(C) =1, Fa|b7 Fa|b1627 Fa|b1...bl gh(F) =0
Fopy..p; — lrreducible tensors, symmetric in second group and
traceless. Q-structure: Stora, ..., Brandt

Qr" =0 Q0°=0, QC= Fuf"0", QF,,=0"F,,.
Equations of motion (promoting C, F to fields ¢*(C) = Aq(x)04,

o*(F.)=F. (x) M. \Vasiliev

aCLAb — abAa — alb > 80Fa|b = F |bc

a

taking a trace of the 2nd gives 1”9, Fy . = 0.



Reparametrization invariance and AKSZ sigma

models

Suppose that (Ep[q)x, Q) is a locally trivial @-bundles. Restrict
to local analysis. Then

(Erx. Q) = (T[1]X,dx) x (F,QFp)
Gauge PDEs of this type are known as AKSZ sigma models.

In higher dimension: local triviality = reparmetrization invari-
ance (in the context of BRST cohomology this was known as
a posibility to eliminate dy through change of variables, Brandt,
Dragon; Barnich, Brandt, Henneaux (1993)))

In particular, any reparametrization-invariant gauge theory (e.g.
gravity) can be locally represented as AKSZ sigma model Barnich,
M.G. 2010



Example: zero-curvature equation

Take Eppx = (T[1]X,dx) x (g[1],@Q), where g is a Lie algbera
and @ is a CE differential seen as a vector field. Let C% de-
note coordinates on g[l] then QC?® = —%UE‘,YCBCT Denoting
o*(C?%*) = A%(x)0* we get
dyoo* =0 0Q = dA—I—%[A,A] —0
Gauge transformations:
0A = de + [A, €]

Topological PDE (Nonlagrangian Chern-Simons). Finite-dim Q-
bundle. Example known from AKSZ.



Lagrangian formalism beyond jet-bundles.
Intrinsic action

LLagrangian induces presymplectic structure w €& /\(“_172)(5) on

the equation manifold &.
Kijowski, Tulczyjew 1979, Crnkovic, Witten, 1987, Hydon 2005, Khavkine

2012, Alkalaev M.G. 2013, Sharapov 2016
Indeed, given a Lagrangian £ € A™O9(J°(F)) define x € A"~ L1(J®(F)):

5EL£ R
dyL = dy¢" Soi dnX

Define x = X|g and w = dvx
dvw = dphw = 0

Generic w on £ satisfying the above is called a compatible presym-
plectic structure on €&.



More generally, suppose PDE £ is eqgipped with a compatible w.
It follows w = d(x +1) for some x € AP~ 11(&),1 € A»O(E). These
define a natural action functional on sections of £ called intrinsic
action: MG, 2016

Slo =/ o* [
(o] = | o Cx+1D)
What this has to do with the PDE in question?

S¢ doesn’'t depend on fields in the kernel of w. Assuming regular-
ity take a symplectic quotient. The resulting Lagrangian system
is weaker, £ C £¢. For a class of systems containing YM, Gravity
etc. there exists w such that S€¢ is equivalent to the standard
Lagrangian.

Counterexample: systems with degree zero differential conse-
quences, e.g. massive spin-2 system. M.G. Gritsaenko 2021



Example: scalar field

LLagrangian:
1
L= >n%ady, — V()
£ is coordinatized by x%, @, ¢a, Oup, - - - With ¢, traceless.

1 v
dnz® = dz®,  dnd = da¢a,, dpda = dzb(Pgp — “ab )

The presymplectic potential and 2-form:
x = (dz)? 1¢%vp, w = (dz)? Ldvo®dye
The Hamiltonian:

H = (do)"($ad” — Llg) = 56"6a + V(¢)

The intrinsic Larangian: Schwinger

£° = ()" (#°@ud — 300) — V(@)



Metric gravity

Einstein-Hilbert action
S = /dna;\/—g(R — 2N)

Coordinates on the stationary surf.: z*, g,., M, + independent
derivatives of I‘AW. Presymplectic potential (schematically):

x = +/—g(PHY — “traces” )d\/gw/(dm)g_l ,

The intrinsic action concides with the familiar Palatini action:

’l, pA
__29 d )\) PR VHO_I_ Y “|—>\ N7 ‘2/\)

M.G., Gritsaenko 2021



BV formalism beyond jet-bundles

Presymplectic structures on gauge PDEs

Def. Compatible presymplectic structure on gauge PDE (Ep(1)x, Q@)
Is a vertical 2-form w on Ep[q)x satisfying:

dw =0, Low =0, gh(w) =n—-1

Here n = dim X and vertical forms are understood as equivalence
classes

Defines “Hamiltonian” (or, better, covariant BRST charge) via

iQw = dH, gh(H) =n

w 1S directly related to the BV symplectic structure L extended

as w = +"ot+...8 to be a cocycle of dh+s, i.e. Ly 4w =0.



Intrinsic BV action

w defines action functional on the space of sections of (Ep[y)x, @, w)

Stol = [ (0" (0(dx) — 0 (H))

where x is a presymplectic potential, i.e. w =dx. x — x + dp
adds boundray term.

BV-like extension (just like in AKSZ). Supersection o:

sPVE = [ (FCO(dx) — 57 ()

T[1]X

0

If e.g. gh(C) = 1 then ¢*(C) = Ay(x2)0* while *(C) = C* +
2

Ag0% + €,,0%0° 4 ... | In coordinates:

SPVIl = [ d"ad"0(ca((w,0)0° v (2, 0) = H(¥ (,0))



Interpretation? What this has to do with the gauge PDE in
question? Alkalaev, MG 2013, MG 2016, MG, Kotov, ...

Idea: assume w regular and take a symplectic quotient. Does
not always work in a naive way in interesting cases.

Refined idea: locally, sections are fiber-valued functions, take:
Smaps(T[1]X, F) = Smaps(X,M), M = Smaps(R"[1], F)

M is finite-dimensional provided F'is. Natural lift of w to M
M= [d0 wap((@)dpA(®) AdwP(6),  gh(w) = -1

Now assume that wM is regular and take a symplectic quotient.
We have arrived at BV formulation! With BV symplectic struc-
ture wM(dz)™ and BV master action S5V

M.G. Kotov, 2020; Dneprov, M.G. to appear



Example: Maxwell

Recall: Epp1x = T[1]X x M, Fiber coordinates:
C, gh(c)=1, Frab palbibz - palbib o gp(Fpe) =0

Qz® = 0%, QO°=0, QC = %F@'beaeb, QFlb = g, palbe

indexes rised/lowered with Minkowski metric.

Presymplectic structure: Alkalaev, M.G. 2013; A. Sharapov 2017
w= ()2 araltdc,

indexes rised/lowered with Minkowski metric

Intrinsic action (o*(C) = Agu(2)0%, o*(FUb) = Falb(1)):

S[o] = / A" (8, Ay) Ol — 4(Falb)2



Presymplectic structure on supermaps gives correct BV form!

0] 2
WM = dC A Fa’b + dAg A F“‘b +dFdb A Oy
Here:
0]
55(C) = O(z) + Ag(2)0% + % gegb . ..
~ %k _ a|b C a|b cnd
5" (Foyp) = + 72" (@)0° + LF )00t + .

Formal path integral:

)
Z =/ -S
Leaﬁp(h BV)

where L comprise both usual gauge condition and a gauge condi-
tion for zero modes of wM. No need to take symplectic quotient
explicitly! Analog of superfield formalism (known in AKSZ).



Example: Einstein gravity

Take F = iso(1,3)[1] with coordinates e, w Alkalaev, M.G. 2013

1
X_Qeacdwade d

“Hamiltonian”

o = dw™deCe . e

1
H= Q= _Ewawaeabcde e’

Intrinsic action:

= /XAd¢A —H = /(dwab + w?ew®)egpeqge’e?

Familiar Cartan-Weyl action for 4d GR. Generalization to n > 2
and A # 0 is straightforward. Reduces to usual AKSZ represen-
tation for 3d GR.

Just like in the case of scalar defines full BV formulation on the
space of supermaps MG, Kotov, 2020



Conclusions

Gauge PDEs — BV-BRST like extansions of standard PDEs.
Rather flexible and invariant formalism (includes usual BV at
EOM level as a particuar case.

Explicitly relates metric and frame-like formalism. Can be
reagrded as a covariant hamiltonian formalism. In simple
cases reproduces De Donder-Weyl formulations.

Gauge PDEs as geometric objects. Well suited to work with
diffeomorphims-invariant and topological models. Notion of
equivalence.

All the ingredients of the BV formulation are naturally en-
coded in the graded presympletic structure on the gaueg
PDE.



In the case of variational systems unifies Lagrangian and
Hamiltonian BRST formalism, cf. BV/BFV approach of cCat-
taneo et all.

Gives an invariant approach to study boundary values of
gauge fields. In particular in the AdS/CFT correspondence
context. Bekaert, M.G. 2012. In particular, Fefferman-Graham
construction (and tractor calculus) can be seen as a certain
gauge PDE. M.G. 2012, M.G. Waldron 2011, Bekaert, M.G. Skvortsov
2017

Sucessful applications in constructing new models of HS the-
ory, e.g. Type-B theory (AdS holographic dual to conformal
spinor on the boundary) M.G. Skvortsov 2018

Recent construction of Lagrangians for AdSs higher spin

gravity in terms of presymplectic AKSZ. Sharapov, Skvortsov
2020



e Minimal presymplectic BV formulation of conformal gravity
gives an alternative to Kaku et all, 1977 frame like formulation.
No artificial torsion-free constraint. Dneprov, M.G., to appear



