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Abstract

We consider a set of two-loop sunrise master integrals with two

different internal masses at pseudo-threshold kinematics (i.e. q2 =

m2 in Euclidean space) and we solve it including in terms of elliptic

polylogarithms to all orders of the dimensional regulator.



0. Introduction

In the last decades much progress has been made in the un-

derstanding of the mathematical properties of Feynman integrals.

Arguably many of the breakthroughs in this line of research origi-

nated from the identification of classes of special functions suited

for the solution of Feynman integrals by means of various analytic

methods. It is a well-known fact that while many Feynman integrals

admit representations in terms of so-called multiple polylogarithms

(MPLs) (Goncharov,1998); (Remiddi,Vermaseren,1999).



More recently, the scientific community has centered its atten-

tion to the study of Feynman integrals whose geometric proper-

ties are defined by elliptic curves. Following early investigations of

(Sabry,1962), (Broadhurst,Fleischer,Tarasov,1993),

many integrals involving elliptic curves have been computed in the

literature (see the review in (Weinzierl,2020)).



In a parallel line of research, a class of functions, the so-called

Elliptic Multiple Polylogarithms (eMPLs), describing all iterated

integrals on the torus has been identified in the mathematics liter-

ature

(Brown,Andrey,2011); (Beilinson,Levin,1994); (Levin,Racined,2007).

While these functions formally solve the problem of generalising

MPLs to more complicated geometries, their definition is not natu-

rally suited for physical applications. Progress in this direction has

been made in (Bloch,Vanhove,2013), (Weinzierl et al.,2013-2020);

(Broedel,Duhr,Dulat,Tancredi,2017) [below (Broedel,2017)],

where eMPLs are defined on the complex plane, and their structure

naturally adapts to representations of Feynman integrals commonly

used in the physics literature (e.g. Feynman parameters).



Special functions such as MPLs and eMPLs, frequently appear

when computing Feynman integrals in dimensional regularisation.

More specifically, Feynman integrals admit a Laurent expansion

with respect to the dimensional regulator and the coefficients of

this expansion can be often computed explicitly in terms of known

special functions. In practice it is often possible to truncate the

Laurent series, as the computation of physically relevant quantities

requires only a few expansion orders. Nonetheless it is interesting

to explore the analytic structure of these coefficients at higher or-

ders or, more generally, to all orders of the dimensional regulator.



In this talk we consider a two-loop sunrise integral topology with

two internal masses and pseudo-threshold kinematics

(Kniehl,Kotikov,Onishchenko,Veretin,2005,2019),

(Besuglov,Kotikov,Onishchenko,2022); (Kalmykov,Kniehl,2008) [be-

low (Kniehl,2005,2019); (Besuglov,2022); (Kalmykov,2008)].

More precisely, we consider two different internal masses, denoted

by m and M , and external kinematics q2 = m2 (in Euclidean

space). This integral family appears when considering non-relativistic

limits of Quantum Chromodynamics (NRQCD) and Quantum Elec-

trodynamics (NRQED).



This integral family admits a closed-form solution in terms of

4F3-hypergeometric functions, as shown in (Kalmykov,2008) (the

corresponding off-shell diagrams with equal masses are consider-

ably more complicated and their explicit solution requires Appell’s

F2 hypergeometric functions (Tarasov,2006)). [But Oleg Tarasov

comment of “Advances in Quantum Field Theory”].

Moreover, rather similar results (but with O(ε) accuracy) exist for

three-point and four-point two-loop Feynman diagrams in NRQCD

kinematics (see (Kniehl,2019)). Some exact results are presented

in (Besuglov,2022).



Here we consider the two-loop sunrise integral family discussed

above and derive results in terms:

• of one- and two-fold integral representations.

• (in the first two ε-orders under consideration) multiple integrals

containing the elliptic kernel and logarithms and dilogarithms in

the integrands. In more general cases, such multiple integrals

containing the elliptic kernel and Goncharov’s MPLs in the inte-

grand (see (Besuglov,Onishchenko,Veretin,2020);(Besuglov,2021);

(Besuglov,Onishchenko,2021);(Besuglov,Kotikov,Onishchenko,2022)).

[below (Besuglov)].

• of eMPLs (following (Broedel,2017)) valid to all orders of the

dimensional regulator.



1. The sunrise integral

We study the sunrise integral topology defined as,

Ji1,i2,i3(m
2,M2) =

∫ dDk1d
Dk2 (µ

2)2ε

[k22 +m2]i1[k21 +M2]i2[(k1 − k2 − q)2 +M2]i3

∣∣∣∣∣∣∣∣∣∣∣q2=m2

,

with D = 4 − 2ǫ. This integral family has three master inte-

grals, which can be chosen to be J1,1,1, J1,1,2, J1,2,2 and which

can be solved in closed form in terms of hypergeometric functions

(Kalmykov,2008) as,
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The normalization constant is,

N̂1 =
Γ2(1 + ǫ)(µ2)2ǫ

(m2M2)ǫ
m2

M2 .



2. Integral representations

Here we show that the above hypergeometric functions admit

one-fold and two-fold integral representations:

J1,2,2 =
N̂1

M2[J
(1)
1,2,2(t) + (2t)ε−1 J

(2)
1,2,2(t) + (2t)ε J
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where K̂ is defined as,
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,



The factors I
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Integrals with tildes are used when the corresponding integrals

have singularities for small p values and for small z values. They

are constructed from the corresponding integrals by extracting the

leading asymptotics of subintegral expressions for small p and for

small z, respectively, and, therefore, they are finite.



3. Integral representations (continuation)

Using above avaluations, we have more convenient integral rep-

resentations.

3.1. J1,2,2

M2 J1,2,2 = N̂1
K̂1

4t2
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3.2. J1,1,1 and J1,1,2

We split the expressions for J1,1,2 and J1,1,1 to singular and regular

parts:
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Ĵ
reg
1,1,2 = [

1

ε
I
(1)
2 (t) +




t2

2




ε

Ĩ
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where the new normalization constant is

N̂2 = (2t)ε−1 N̂1 =
Γ2(1 + ε)(µ2)2ε

(M2)2ε
.

3.3. Example: the first hypergeometric function in J1,2,2.

The first 4F3-hypergeometric function of J1,2,2, i.e.
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where t = m2/(2M2). The product Γ(α)Γ(1/2+α) can be written

as,

Γ(α)Γ(1/2 + α) = 21−2α√π Γ(2α) ,

which results in the following simplified expression for F
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It is convenient to use the following integral representations for the
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In order to proceed with our analysis it is convenient to consider

first the series on the right hand side in the limit ε = 0,
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Using the integral representation for the factor 1/(m−ε) = ∫1
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Combining these results, we have

∞∑
m=0

Γ(m + 3
2)

Γ(m + 2− ε)
(−(tp)2)

m
= − Γ(12)

Γ(1− ε)(tp)2
f
(1)
1 (pt) ,

where

f
(1)
1 (pt) =

1
(

1 + t2p2
)1/2



1− εJ (1)(q)



 − 1 .

The final result for F
(1)
1 (t) reads,

F
(1)
1 (t) = − 3(1− ε)

2(1 + ε)t2
K̂1 I

(1)
1 (t) , I

(1)
1 (t) =

∫ 1
0 dp pε−1(1− p)−1/2−ε f

(1)
1 (pt) ,

where the normalization K̂1 was determined above. The elliptic

structure is carried by the product (1− p)−1/2−ε(1 + t2p2)−1/2.



4. Leading terms of the ε-expansion and one-fold integrals

Here we derive a one-fold integral representation for the first two

orders of the ǫ-expansion of J1,2,2, J1,1,2 and J1,1,1. The first two

ǫ orders considered here can be expressed as one-fold integrals over

logarithms and dilogarithms (in General Goncharov MPLs as it was

shown in (Besuglov)) with algebraic prefactors. A similar analysis

shows that to arbitrary order of the dimensional regulator the result

is in terms of one-fold integrals over higher weight MPLs.



4.1. Inner integrals

We start by considering integral J (2)(p), at order ε0,

J (2)(pt, ε = 0) =
∫ tp
0

ds√
1 + s2

,

which can be evaluated directly by means of the variable change,

s2 =

√
1 + s2 − s√
1 + s2 + s

,

leading to,

J (2)(pt, ε = 0) =
1

2

∫ 1
R2

ds2
s2

= −1

2
logR2 ≡ J

(2)
0 (p) ,

with

R2 =

√

1 + t2p2 − tp
√

1 + t2p2 + tp
=

1−√
q

1 +
√
q
.



By means of the same variable change, we evaluate the next ε

order,

J (2)(pt) =
1

21+ε
∫ 1
R2

ds2

s
1+ε/2
2

(1 + s2)
2ε

(1− s2)2ε
= J

(2)
0 (pt) + εJ

(2)
1 (pt) + O(ε2) ,

where J
(2)
0 (pt) is given above and,

J
(2)
1 (p) =

1

8
log2R2 + ζ2 + Li2(−R2)−

1

2
Li2(R2) .

We now consider integrals J (1)(p) and J (3)(p) at order ε0,

J (1)(p, ε = 0) = J (3)(p, ε = 0) =
∫ q
0
dz

z




1√
1− z

− 1


 .

By introducing a regulator δ we have,
∫ y
δ
dz

z
= log q − log δ ,

while the remaining term can be evaluated by the variable change,

z = 1− s2, s =
(1− s1)

(1 + s1)
,



and,

∫ q
δ

dz

z
√
1− z

=
∫R1
δ/4

ds1
s1

= logR1 − log
δ

4
, R1 =

1−
√
1− q

1 +
√
1− q

.

The full result can be written as,

J (i)(p, ε = 0) = log(4R1)− log q = log
4R1

q
≡ J

(i)
0 (p), (i = 1, 3) .



At the next order we have,

J (i)(p) = J
(i)
0 (p) + εJ

(i)
1 (p) +O(ε2), (i = 1, 3) ,

where J
(1)
0 (p) = J

(3)
0 (p) are given

J
(1)
1 (p) = J

(1)
1 (p)− 2Li2(−R1),

J
(3)
1 (p) =

1

2
J
(1)
1 (p) + 2Li2(R1)− 4Li2(−R1) ,

with,

J
(1)
1 (p) = log q log(4R1)−

1

2
log2 q − log 4 logR1 .



4.2. Results for the sunrise integrals

In order to obtain the ε-expansions of J1,2,2, J1,1,2 and J1,1,1 up

to and including O(ε), we use the expressions for integrals I(i)(t)
(i = 1, 3) and their integral representations. We have, for example,
for J1,2,2

I
(1)
1,1(t) =

∫ 1

0

dp

p
√
1− p

(
1√

1 + p2t2
− 1

) 
1 + ε l1 +

ε2

2
l21


+ O(ε2) ,

I
(1)
1,2(t) =

∫ 1

0

dp

p
√
1− p

1√
1 + p2t2

[
J
(1)
0 + ε (l1J

(1)
0 + J

(1)
1 )

]
+ O(ε2),


t

2

2



ε

I
(2)
1 (t) =

∫ 1

0

dp

p
√
1− p

1√
1 + p2t2

[
J
(2)
0 + ε (l2J

(2)
0 + J

(2)
1 )

]
+O(ε2) ,

(
t

2

)ε
I
(3)
1,1(t) =

∫ 1

0

dp

p
√
1− p


 1√

1 + p2t2


1 + ε l32 +

ε2

2
l232


−


1 + ε l31 +

ε2

2
l231




+O(ε2) ,

(
t

2

)ε
I
(3)
1,2(t) =

∫ 1

0

dp

p
√
1− p

1√
1 + p2t2

[
J
(3)
0 + ε (l32J

(3)
0 + J

(3)
1 )

]
+ O(ε2) ,

where,

l1 = log

(
p

1− p

)
, l2 = log


 p3t2

2(1− p)(1 + p2t2)


 = log


 pq

2(1− p)


 ,

l31 = log


 p2t

2(1− p)


 , l32 = log


 p2t

2(1− p)
√
1 + p2t2


 = log


 p

√
q

2(1− p)


 ,

with J
(i)
0 and J

(i)
1 (i = 1, 2, 3) given above.



Combining all terms, we obtain the following finite expression,

Ĵ1,2,2 =
∫ 1

0

dp

p
√
1− p

[
b0 +

1√
1 + p2t2

B0 + ε

(
b1 +

1√
1 + p2t2

B1

)]
+ O(ε2) ,

Ĵ reg
1,1,2 =

∫ 1

0

dp

p2
√
1− p

[
b0 − (pt) +

1√
1 + p2t2

B0 + ε
(
b1 − (pt)(1 + l31) +

1√
1 + p2t2

B1

)]
+ O(ε2) ,

Ĵ reg
1,1,1 =

∫ 1

0

dp
√
1− p

p3

[
b0 − (pt) +

(pt)2

4
(2b0 − 1) +

1√
1 + p2t2

B0

+ε
(
b1 − (pt)(1 + l31) +

(pt)2

4

[
b20 − 3b0 +

1

2
+ l1(2b0 − 1)

]
+

1√
1 + p2t2

B1

)]
+ O(ε2) ,

where,

b0 = log

(
pt

2

)
, B0 = log(R1R2), b1 = log

(
pt

2

)
log


 p3t

2(1− p)2


 ,

B1 = J
(2)
1 + Li2(R1) +

1

4
log2(R1)−

1

2
log(R1R2) log


 pq

4(1− p)




+
1

4
log

(
q

4

)
log(R1)−

1

8
log2

(
q

4

)
− log2 2 ,

where J
(2)
1 is given above as

J
(2)
1 (p) =

1

8
log2R2 + ζ2 + Li2(−R2)−

1

2
Li2(R2) .

Up to O(ε0), the results are in full agreement with (Kniehl,2019).

Here, however, the results are given up to O(ε1).



5. All orders result in terms of elliptic polylogarithms

In this section we derive eMPL representations for the sunrise in-

tegrals J1,2,2, J1,1,2 and J1,1,1 valid to all orders of the dimensional

regulator. Specifically, we start with a short review of eMPLs (fol-

lowing to (Brodel,2017)) , discussing their definition and the basic

analytic properties.

We do not discuss the general structure of the integral represen-

tations (it was presented in (CMK,2020)) but we show a simple

example by calculation of the integral I
(1)
2 .

We express all considered integrals in terms of eMPLs to all orders

of the dimensional regulator, and present our final results.



5.1. Elliptic polylogarithms

We are interested in the computation of iterated integrals of the

form,
∫ x
0 dx1R1(x1, y(x1))

∫ x1
0 dx2R2(x2, y(x2)) . . .

∫ xn−1
0 dxnRn(xn, y(xn)) ,

where Ri are rational functions of their arguments and y(x) is an

elliptic curve,

y(x) =
√

(x− a1)(x− a2)(x− a3)(x− a4) ≡ y4(x) ,

y(x) =
√

(x− a1)(x− a2)(x− a3) ≡ y3(x) ,

All iterated integrals can be expressed in terms of eMPLs. In the

complex plane, eMPLs are defined as

El




n1, ..., nk
c1, ..., ck

; x



=

∫ x
0 dt ϕn1(c1, t)El




n2, ..., nk
c2, ..., ck

; t



, El( ; x) = 1, (l = 3, 4) ,

with ni ∈ Z and ci ∈ C.



Elliptic polylogarithms are a generalisation of ordinary multiple

polylogarithms (MPLs), defined recursively as,

G(a1, a2, . . . , an; x) =
∫ x
0

dt

t− a1
G(a2, . . . , an, t),

with G(; x) ≡ 1 and,

G(~0, x) ≡ log(x)n

n!
.

By definition we see that MPLs are a subset of eMPLs,

El




1, ..., 1

c1, ..., cn
; x



= G(c1, c2, . . . , cn; x) ,

where ci 6= ∞.



The case l = 4.
The recursion starts at E4( ; x) = 1. By construction, the kernels
ϕn(c, x) have at most simple poles, and they are (see (Broedel,2017)
for a detailed discussion)

ϕ0(0, x) =
c4
y(x)

,

ϕ1(c, x) =
1

x− c
, ϕ−1(c, x) =

y(c)

(x− c)y(x)
− (δc0 + δc1)

1

x− c
,

ϕ−1(∞, x) =
x

y(x)
, ϕ1(∞, x) =

c4
y(x)

Z4(x) ,

ϕn(∞, x) =
c4
y(x)

Z
(n)
4 (x) , ϕ−n(∞, x) =

x

y(x)
Z

(n−1)
4 (x)− δn2

c4
,

ϕn(c, x) =
1

x− c
Z

(n−1)
4 (x)− δn2 Φ4(x) ,

ϕ−n(c, x) =
y(c)

(x− c)y(x)
Z

(n−1)
4 (x) , (n > 1),

where y(c) and c4 are independent of x with,

c4 =
1

2

√
a13a24 with aij = ai − aj .



Some properties of ellitic integrals:

Periods:

ω1 = 2c4
∫ a3
a2

dx

y
= 2K(λ), λ =

a14a23
a13a24

,

ω2 = 2c4
∫ a2
a1

dx

y
= 2iK(1− λ),

where K(λ) is complete integral of the first kind.

For other roots, the result is a linear combination of ω1 and ω1:

2c4
∫ aj
ai

dx

y
= mij ω1 + nij ω2 .



Quasi-periods:

η1 = −1

2

∫ a3
a2 dx

˜
Φ4(x) = E(λ)− 2− λ

3
K(λ),

η2 = −1

2

∫ a2
a1 dx

˜
Φ4(x) = −iE(1− λ) + i

1 + λ

3
K(1− λ),

where E(λ) is complete integral of the second kind and the function
˜
Φ4(x) has the following form:

˜
Φ4(x) =

1

c4y


x2 − s1x

2
+
s2
6




and sn(a1, a2, a3, a4) is elementary symmetric polynomial of defree

n.

For other roots, the result is a linear combination of ω1 and ω1:

−1

2

∫ aj
ai dx

˜
Φ4(x) = mij η1 + nij η2 .



Moreover we define,

El




~1
~0
; x



= G(~0; x) ≡ log(x)n

n!
, (l = 3, 4)

where ~1 and ~0 are vectors with entries equal to 1 and 0 respectively,

and n = length(~1) = length(~0).

The function Z4(x) is defined by first introducing an auxiliary

function Φ4(x),

Φ4(x) ≡ ˜
Φ4(x) + 4c4

η1
ω1

1

y
=

1

c4 y


x2 − s1

2
x +

s2
6


 + 4c4

η1
ω1

1

y
,

whose primitive is,

Z4(x) =
∫ x
a1 dtΦ4(t) .

In the next sections we will see that, in our integral representa-

tions, the function Φ4(x) appears only in the last (outer) integra-

tion, and only the case Z
(1)
4 (x) = Z4(x) need to be considered.



The case l = 3.
The recursion starts at E3( ; x) = 1. By construction, the kernels
ϕn(c, x) have at most simple poles, and they are (see (Broedel,2017)
for a detailed discussion)

ϕ0(0, x) =
c3

y3(x)
,

ϕ1(c, x) =
1

x− c
, ϕ−1(c, x) =

y3(c)

(x− c)y3(x)
,

ϕ1(∞, x) =
c3

y3(x)
Z3(x) , ϕn(∞, x) =

c3
y3(x)

Z
(n)
3 (x) ,

ϕn(c, x) =
1

x− c
Z

(n−1)
3 (x)− δn2 Φ3(x) ,

ϕ−n(c, x) =
y3(c)

(x− c)y3(x)
Z

(n−1)
3 (x) , (n > 1),

where y3(c) and c3 are independent of x with,

c3 =
1

2

√
a31 with aij = ai − aj .



Some properties of ellitic integrals:

Periods:

ω1 = 2c3
∫ a2
a1

dx

y3
= 2K(λ), λ =

a21
a31

,

ω2 = 2c3
∫ a2
a3

dx

y
= 2iK(1− λ),

where K(λ) is complete integral of the first kind.

For other roots, the result is a linear combination of ω1 and ω1:

2c3
∫ aj
ai

dx

y
= mij ω1 + nij ω2 .



Quasi-periods:

η1 = −1

4

∫ a2
a1 dx

˜
Φ3(x) = E(λ)− 2− λ

3
K(λ),

η2 = −1

4

∫ a2
a1 dx

˜
Φ3(x) = −iE(1− λ) + i

1 + λ

3
K(1− λ),

where E(λ) is complete integral of the second kind and the function
˜
Φ4(x) has the following form:

˜
Φ3(x) =

1

c3y3


x− s1

3




and sn(a1, a2, a3) is elementary symmetric polynomial of defree n.

For other roots, the result is a linear combination of ω1 and ω1:

−1

2

∫ aj
ai dx

˜
Φ4(x) = mij η1 + nij η2 .



The function Z3(x) is defined by first introducing an auxiliary

function Φ3(x),

Φ3(x) ≡ ˜
Φ3(x) + 8c3

η1
ω1

1

y
=

1

c4 y


x− s1

3


 + 8c3

η1
ω1

1

y
,

whose primitive is,

Z3(x) =
∫ x
a3 dtΦ3(t) .



As for all iterated integrals, eMPLs satisfy a shuffle algebra, with

the shuffle product defined as, (l = 3, 4)

El




a1, ..., an

a′1, ..., a
′
n
; x



El




b1, ..., bm

b′1, ..., b
′
m
; x



=

∑

~c=~a⊔⊔~b
El




c1, ..., cn+m

c′1, ..., c
′
n+m

; x



.

The vector ~c is the vector obtained by performing all the shuffles

of ~a and ~b, preserving the ordering of the elements of ~a and ~b.

Examples:

El



a1,

a′1
; x


El



b1, ..., bm

b′1, ..., b
′
m

; x


 = El



a1, b1, b2, ..., bm

a′1, b
′
1, b

′
2, ..., b

′
m

; x


 + El



b1, a1, b2, ..., bm

b′1, a
′
1, b

′
2, ..., b

′
m

; x




+El



b1, b2, a1, ..., bm

b′1, b
′
2, a

′
1, ..., b

′
m

; x


 + ... + El



b1, b2, ..., a1, bm

b′1, b
′
2, ..., a

′
1, b

′
m

; x


 + El



b1, b2, ..., bm, a1

b′1, b
′
2, ..., b

′
m, a

′
1

; x


 ,

and

El



a1, a2

a′1, a
′
2

; x


El



b1, b2

b′1, b
′
2

; x


 = El



a1, a2, b1, b2

a′1, a
′
2, b

′
1, b

′
2

; x


 + El




a1, b1, a2, b2

a′1, b
′
1, a

′
2, , b

′
m

; x




+El



a1, b1, b2, a2

a′1, b
′
1, b

′
2, a

′
2

; x


 + El



b1, a1, a2, b2

b′1, a
′
1, a

′
2, b

′
2

; x


 + El



b1, a1, b2, a2

b′1, a
′
1, b

′
2, a

′
2

; x


 + El



b1, b2, a1, a2

b′1, b
′
2, a

′
1, a

′
2

; x


 .



5.2. Regularisation

As we will see in the next sections we are interested in computing

definite integrals of the form,

∫ 1
0 f (x)dx = F (1)− F (0),

∂F (x)

∂x
= f (x) .

In some cases individual functions inside the primitive develop di-

vergences when evaluated at the integration bounds, and in order

to compute the definite integral one needs to perform two limits,
∫ 1
0 f (x)dx = lim

x→1
F (x)− lim

x→0
F (x) ≡ Reg0,1F (x).



5.3. Elliptic polylogarithms and all orders result

Contrary to general cases considered in [CMK] we consider here

an example which clear up the obtained results.

5.3.1. Example

We show how the solution strategy of the previous section works

in practice by considering integral I
(2)
1 (t). The dependence on the

elliptic curve is made explicit by applying the variable change,

I
(2)
1 (t) =

∫ 1
0 dx

2

t
(

1− x2
)

y(x)




(

1− x2
)3

t2x2y(x)2




ε

J (2)(x)

where

p(x) = 1− x2, 0 < x < 1; y(x) =

√√√√√√√
1

t2
+ (1− x2)2 ≡ 1

t

√

1 + t2p2 .



The inner integral can be expressed as

J (2)(x) = − ∫ x
1 dz1

2z1
y(z1)




ty2(z1)

1− z21




ε

.

All the ε-powers can be expanded in ε



ty2(x)

1− x2




ε

=
∞∑
i=0

ǫi

i!
logi




ty2(x)

1− x2



,

The resulting logarithm can be expressed in terms of eMPLs,

log




ty2(x)

1− x2



= log(ty2(0))) +

∫ x
0 dz

d

dz
log




ty2(z)

1− z2




= log

t2 + 1


 − log(t) +

∫ x
0 dz

2z

t2

(

z2 − 1
)2 − 1




t2
(

z2 − 1
)

y(z)2
.



The integrand above can be written in terms of the integration

kernels as,

2z

t2

(

z2 − 1
)2 − 1




t2
(

z2 − 1
)

y(z)2
=

4∑

i=1
ϕ1 (ai, z)− ϕ1(−1, z)− ϕ1(1, z) ,

where we denoted with ai the four roots of the elliptic curve,

a1 = −
√
t− i√
t

, a2 =

√
t− i√
t

, a3 = −
√
t + i√
t

, a4 =

√
t + i√
t

.

Upon integration we find,

L4 ≡ log




ty2(x)

1− x2



=

4∑

i=1
E4




1

ai
; x



− E4




1

−1
; x



− E4




1

1
; x




+ log

t2 + 1


 − log(t) .



The prefactor is

− 2z1
y(z1)

= −2ϕ−1(∞, z1) ≡ k5(z1)

and, thus, the inner integral has the following form

− ∫ x
1 dz1

2z1
y(z1)




ty2(z1)

1− z21




ε

=
∫ x
1 dz1 k5(z1)

∞∑
j=0

εj

j!
L
j
4(z1) ≡

∞∑
j=0

εj

j!


K5 ∗ Lj

4



x

1
,

where the primitive K5 is

K5 = −2E4




−1

∞
; x



.



The evalution of the rest is very siimilar and we have

I
(2)
1 (t) = Reg0,1

∞∑
i,j=0

ǫi+j

i!j!
K4 ∗ Li

5


K5 ∗ Lj

4



x

1
,

where,

L5 = − 4∑

i=1
E4




1

ai
; x



+ 3E4




1

−1
; x



− 2E4




1

0
; x



+ E4




1

1
; x




− log

t2 + 1


 ,

K4 =
4∑

i=1
E4




−1

−1
; x



− E4




−1

1
; x



− E4




1

1
; x



.



5.3.1. Same example

We consider the integral I
(2)
1 (t) when y = y3. The dependence

on the elliptic curve is made explicit by applying the variable change,

I
(2)
1 (t) =

∫ 1
0 dx3

2

t (1− x3) y(x3)




(1− x3)
3

t2y(x3)2




ε

J (2)(x3)

where

p = 1− x3, 0 < x3 < 1; y(x3) = x3

√√√√√√√
1

t2
+ (1− x3)2 ≡

1− p

t

√

1 + t2p2 .

The inner integral can be expressed as

J (2)(x3) = − ∫ x3
1 dz3

tε(1− z3)
−εz

1/2−ε
3

y1−3ε(z3)
= − ∫ x3

1 dz3

√
z3

y(z3)
+ O(ε).



!!! The problem: the function
√
x

y3
is not an element of the Broedel et al basis!!!

We would like to remember that the Broedel et al basis has both
parts: a nonelliptic one and an elliptic one

ϕ0(0, x) =
c3

y3(x)
,

ϕ1(c, x) =
1

x− c
, ϕ−1(c, x) =

y3(c)

(x− c)y3(x)
, ...

where the nonelliptic one leads to

E3




1

c
; x



≡ G(c; x)



But the term √
x

y3
leads to G(c; f (x)) (with some known f (x)), which cannot be

expressed as combination of

E3




1

ci
; x



≡ G(ci; x) (ci are some numbers)

and, thus, cannot be used as a term in shuffle product.

Indeed, in ε-expansion we had

J (2)(pt) =
1

21+ε
∫ 1
R2

ds2

s
1+ε/2
2

(1 + s2)
2ε

(1− s2)2ε
= J

(2)
0 (pt) + εJ

(2)
1 (pt) + O(ε2) ,

where

J
(2)
0 (p) = −1

2
logR2 , R2 =

√

1 + t2p2 − tp
√

1 + t2p2 + tp

J
(2)
1 (p) =

1

8
log2R2 + ζ2 + Li2(−R2)−

1

2
Li2(R2) .



!!! So, it is possible that in the case of Elliptic Poly-

logarithms these two representations (based on y4 and

y3), are not completely interchangeable, as they were

in the case of ellitic integrals. !!!

!!! But it needs additional investigations !!!



5.4. Sunsets

By applying the procedure described above we obtain one of the

main results of this paper, i.e. an explicit expression for the above

integrals in terms of eMPLs valid to all orders of the dimensional

regulator.



5.4.1. J1,2,2

We obtain the following expression for J1,2,2,

M2 J1,2,2 = N̂1
K̂1

4t2
Ĵ1,2,2,

Ĵ1,2,2 = [
1

ε
I
(1)
1 (t) +




t2

2




ε

I
(2)
1 (t)− 1

ε



t

2




ε
I
(3)
1 (t)]

= [
1

ε
I
(1)
1,1(t)− I

(1)
1,2(t) +




t2

2




ε

I
(2)
1 (t)−



t

2




ε 


1

ε
I
(3)
1,1(t)−

1

2
I
(3)
1,2(t)


] .



where,

I
(1)
1,1(t) = Reg0,1

∞∑
i=0

ǫi

i!
K1 ∗ Li

1, ,

I
(1)
1,2(t) = Reg0,1

∞∑
i,j=0

ǫi+j

i!j!
K2 ∗ Li

3


K3 ∗ Lj

2



x

1
,

I
(2)
1 (t) = Reg0,1

∞∑
i,j=0

ǫi+j

i!j!
K4 ∗ Li

5


K5 ∗ Lj

4



x

1
,

I
(3)
1,1(t) = Reg0,1

∞∑
i=0

ǫi

i!
K6 ∗ Li

6 + Reg0,1
∞∑
i=0

ǫi

i!
K4 ∗ Li

7 ,

I
(3)
1,2(t) = Reg0,1

∞∑
i,j=0

ǫi+j

i!j!
K7 ∗ Li

8


K9 ∗ Lj

4



x

1

+Reg0,1
∞∑

i,j=0

ǫi+j

i!j!
K7 ∗ Li

8


K8 ∗ Lj

9



x

1
,

where Ki and Li are depth one eMPLs.



Since the integrals I
(2)
1 (t) and I

(3)
1 (t) contribute to Ĵ1,2,2 with

the corresponding factors, it is convenient to present also



t2

2




ε

I
(2)
1 (t) = Reg0,1

∞∑
i,j=0

ǫi+j

i!j!
K4 ∗ L̂i

5


K5 ∗ Lj

4



x

1
,



t

2




ε
I
(3)
1,1(t) = Reg0,1

∞∑
i=0

ǫi

i!
K6 ∗ L̂i

6 + Reg0,1
∞∑
i=0

ǫi

i!
K4 ∗ L̂i

7 ,



t

2




ε
I
(3)
1,2(t) = Reg0,1

∞∑
i,j=0

ǫi+j

i!j!
K7 ∗ L̂i

8


K9 ∗ Lj

4



x

1

+Reg0,1
∞∑

i,j=0

ǫi+j

i!j!
K7 ∗ L̂i

8


K8 ∗ Lj

9



x

1
,

where,

L̂5 = L5 + 2 log t− log 2, L̂k = Lk + log t− log 2 (k = 6, 7, 8) .



5.4.2. Results for Li and Ki

Here we provide the definitions for the eMPLs expressions

L1 = E4




1

−1
; x


− 2E4



1

0
; x


 + E4



1

1
; x


 ,

L2 =
4∑

i=1
E4



1

ai
; x


− 2E4




1

−1
; x


− 2E4



1

1
; x


 + log

(
t2 + 1

)
− 2 log(t),

L3 = −
4∑

i=1
E4



1

ai
; x


 + 3E4




1

−1
; x


− 2E4



1

0
; x


 + 3E4



1

1
; x




− log
(
t2 + 1

)
+ 2 log(t),

L4 =
4∑

i=1
E4



1

ai
; x


− E4




1

−1
; x


− E4



1

1
; x


 + log

(
t2 + 1

)
− log(t),

L5 = −
4∑

i=1
E4



1

ai
; x


 + 3E4




1

−1
; x


− 2E4



1

0
; x


 + 3E4



1

1
; x




− log
(
t2 + 1

)
,

L6 = 2E4




1

−1
; x


− 2E4



1

0
; x


 + 2E4



1

1
; x


 ,

L7 = −1

2

4∑

i=1
E4



1

ai
; x


 + 2E4




1

−1
; x


− 2E4



1

0
; x


 + 2E4



1

1
; x






−1

2
log

(
t2 + 1

)
,

L8 = −
4∑

i=1
E4



1

ai
; x


 + 3E4




1

−1
; x


− 2E4



1

0
; x


 + 3E4



1

1
; x




− log
(
t2 + 1

)
+ log(t),

L9 =
1

2

4∑

i=1
E4



1

ai
; x


− E4




1

−1
; x


− E4



1

1
; x


 +

1

2
log

(
t2 + 1

)
− log(t).

while the primitives of the relevant integration kernels are defined as,

K1 = E4



−1

−1
; x


− E4



−1

1
; x


− E4




1

−1
; x


 ,

K2 = E4



−1

−1
; x


− E4



−1

1
; x


− E4



1

1
; x


 ,

K3 =
4∑

i=1
E4



1

ai
; x


 + 2E4



−1

−1
; x


 + 2E4



−1

1
; x


− 2E4




1

−1
; x


 ,

K4 = E4



−1

−1
; x


− E4



−1

1
; x


− E4



1

1
; x


 ,

K5 = −2E4



−1

∞
; x


 ,



K6 = E4



1

1
; x


− E4




1

−1
; x


 ,

K7 = E4



−1

−1
; x


− E4



−1

1
; x


− E4



1

1
; x


 ,

K8 = −
4∑

i=1
E4



1

ai
; x


− 2E4




1

−1
; x


− 2E4



1

1
; x


 ,

K9 = 2E4



−1

−1
; x


 + 2E4



−1

1
; x


 + 2E4



1

1
; x


 .

We see that the integral J1,2,2 in the form of the elliptic integrals

is finite since K1 = K4 +K6 and,

I
(1)
1,1(t)−



t

2




ε
I
(3)
1,1(t) = Reg0,1

∞∑
i=1

ǫi

i!
K1 ∗ (Li

1 − L̂i
6)

+Reg0,1
∞∑
i=1

ǫi

i!
K2 ∗ (Li

1 − L̂i
7) ∼ O(ε).



6. Conclusions

In this paper we studied a family of sunrise integrals with two dif-

ferent internal masses and pseudo-threshold kinematics in dimen-

sional regularisation. These integrals admit a closed-form solution

in terms of hypergeometric functions (Kalmykov,2008)

and we use this representation as the starting point of our analysis.



• In particular, we show that all corresponding hypergeometric

functions can be represented in terms of one- and two-fold in-

tegral representations.

• In each ε-order, these representations can be represented as

multiple integrals containing the elliptic kernel and Goncharov’s

MPLs in their integrands (see (Besuglov)). In the first two ε-

orders under consideration, there are only logarithms and dilog-

arithms.

•Moreover, integral representations make it possible to represent

them as a combination of eMPLs, in the case of y4, which were

obtained using the procedure (Brodel,2017).



In the case of y3, we observed an appearence of a

term, which is not an element of the Broedel et al

basis..

So, in the case, the Broedel et al basis is not full. Some (nonel-

liptic) term should be added.

!!! So, it is possible that in the case of Elliptic

Polylogarithms these two representations (based

on y4 and y3), are not completely interchangeable,

as they were in the case of elliptic integrals. !!!

!!! But it needs additional investigations !!!


