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Abstract

We consider a set of two-loop sunrise master integrals with two
different internal masses at pseudo-threshold kinematics (i.e. ¢° =
m? in Euclidean space) and we solve it including in terms of elliptic

polylogarithms to all orders of the dimensional regulator.



0. Introduction

In the last decades much progress has been made in the un-
derstanding of the mathematical properties of Feynman integrals.
Arguably many of the breakthroughs in this line of research origi-
nated from the identification of classes of special functions suited
for the solution of Feynman integrals by means of various analytic
methods. It is a well-known fact that while many Feynman integrals

admit representations in terms of so-called multiple polylogarithms
(MPLs) (Goncharov,1998); (Remiddi,Vermaseren,1999).



More recently, the scientific community has centered its atten-
tion to the study of Feynman integrals whose geometric proper-
ties are defined by elliptic curves. Following early investigations of
(Sabry,1962), (Broadhurst,Fleischer, Tarasov,1993),

many integrals involving elliptic curves have been computed in the
literature (see the review in (Weinzierl,2020)).



In a parallel line of research, a class of functions, the so-called
Elliptic Multiple Polylogarithms (eMPLs), describing all iterated
integrals on the torus has been identified in the mathematics liter-
ature
(Brown,Andrey,2011); (Beilinson,Levin,1994); (Levin,Racined,2007).
While these functions formally solve the problem of generalising
MPLs to more complicated geometries, their definition is not natu-
rally suited for physical applications. Progress in this direction has
been made in (Bloch,Vanhove,2013), (Weinzierl et al.,2013-2020);
(Broedel,Duhr,Dulat, Tancredi,2017) [below (Broedel,2017)],
where eMPLs are defined on the complex plane, and their structure
naturally adapts to representations of Feynman integrals commonly

used in the physics literature (e.g. Feynman parameters).



Special functions such as MPLs and eMPLs, frequently appear
when computing Feynman integrals in dimensional regularisation.
More specifically, Feynman integrals admit a Laurent expansion
with respect to the dimensional regulator and the coefficients of
this expansion can be often computed explicitly in terms of known
special functions. In practice it is often possible to truncate the
Laurent series, as the computation of physically relevant quantities
requires only a few expansion orders. Nonetheless it is interesting
to explore the analytic structure of these coefficients at higher or-

ders or, more generally, to all orders of the dimensional regulator.



In this talk we consider a two-loop sunrise integral topology with
two internal masses and pseudo-threshold kinematics
(Kniehl,Kotikov,Onishchenko,Veretin,2005,2019),
(Besuglov,Kotikov,Onishchenko,2022); (Kalmykov,Kniehl,2008) [be-
low (Kniehl,2005,2019); (Besuglov,2022); (Kalmykov,2008)].
More precisely, we consider two different internal masses, denoted
by m and M, and external kinematics q2 — m? (in Euclidean
space). This integral family appears when considering non-relativistic

limits of Quantum Chromodynamics (NRQCD) and Quantum Elec-
trodynamics (NRQED).



This integral family admits a closed-form solution in terms of

4 F3-hypergeometric functions, as shown in (Kalmykov,2008) (the
corresponding off-shell diagrams with equal masses are consider-
ably more complicated and their explicit solution requires Appell’s
F5 hypergeometric functions (Tarasov,2006)). [But Oleg Tarasov
comment of “Advances in Quantum Field Theory"]|.
Moreover, rather similar results (but with O(g) accuracy) exist for
three-point and four-point two-loop Feynman diagrams in NRQCD
kinematics (see (Kniehl,2019)). Some exact results are presented
in (Besuglov,2022).



Here we consider the two-loop sunrise integral family discussed

above and derive results in terms:
e of one- and two-fold integral representations.

e (in the first two e-orders under consideration) multiple integrals
containing the elliptic kernel and logarithms and dilogarithms in
the integrands. In more general cases, such multiple integrals
containing the elliptic kernel and Goncharov's MPLs in the inte-
grand (see (Besuglov,Onishchenko,Veretin,2020);(Besuglov,2021);
(Besuglov,Onishchenko,2021);(Besuglov, Kotikov,Onishchenko,2022)).

[below (Besuglov)].
e of eMPLs (following (Broedel,2017)) valid to all orders of the

dimensional regulator.



1. The sunrise integral

We study the sunrise integral topology defined as,
deldeQ (#2)26
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with D = 4 — 2¢. This integral family has three master inte-
grals, which can be chosen to be Jj 11, J1.12, J1 29 and which

can be solved in closed form in terms of hypergeometric functions

(Kalmykov,2008) as,
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The normalization constant is,
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2. Integral representations

Here we show that the above hypergeometric functions admit

one-fold and two-fold integral representations:
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where

and
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Integrals with tildes are used when the corresponding integrals
have singularities for small p values and for small z values. They
are constructed from the corresponding integrals by extracting the
leading asymptotics of subintegral expressions for small p and for

small z, respectively, and, therefore, they are finite.



3. Integral representations (continuation)

Using above avaluations, we have more convenient integral rep-

resentations.

3.1. J122

and K is defined above.




3.2. Ji11 and Jj 19

We split the expressions for .J; 1 9 and Jj 1  to singular and regular

parts:
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where the new normalization constant is
P21 + £) ()%

NQ = (Zt)g_l Nl = (M2>25

3.3. Example: the first hypergeometric function in Jj 9 .

The first 4 F3-hypergeometric function of Jj 99, i.e.
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where t = m?/(2M?). The product I'(o)['(1/2+) can be written
as,

N)D(1/2 4 a) = 21729 /7D (2a),
which results in the following simplified expression for F1<1>(t),
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In order to proceed with our analysis it is convenient to consider

first the series on the right hand side in the limit ¢ = 0,
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Using standard properties of the o F-function,
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Combining these results, we have
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where the normalization [A(l was determined above. The elliptic
structure is carried by the product (1 — p)~1/27¢(1 4 t2p?)~1/2,



4. Leading terms of the s-expansion and one-fold integrals

Here we derive a one-fold integral representation for the first two
orders of the e-expansion of Jj 99, J1.19 and Jj 1 1. The first two
e orders considered here can be expressed as one-fold integrals over
logarithms and dilogarithms (in General Goncharov MPLs as it was
shown in (Besuglov)) with algebraic prefactors. A similar analysis
shows that to arbitrary order of the dimensional regulator the result

iIs in terms of one-fold integrals over higher weight MPLs.



4.1. Inner integrals

We start by considering integral J<2>( ), at order ",
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By means of the same variable change, we evaluate the next ¢

order,
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At the next order we have,
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4.2. Results for the sunrise integrals

In order to obtain the e-expansions of Jj 99, J1 19 and Jj 11 up

to and including O(e), we use the expressions for integrals I(%)(¢)
(2 =1, 3) and their integral representations. We have, for example,
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Combining all terms, we obtain the following finite expression,
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Up to O(e), the results are in full agreement with (Kniehl,2019).

Here, however, the results are given up to O(c!).



5. All orders result in terms of elliptic polylogarithms

In this section we derive eMPL representations for the sunrise in-
tegrals J1 99, J1 19 and Jj 1 1 valid to all orders of the dimensional
regulator. Specifically, we start with a short review of eMPLs (fol-
lowing to (Brodel,2017)) , discussing their definition and the basic
analytic properties.

We do not discuss the general structure of the integral represen-
tations (it was presented in (CMK,2020)) but we show a simple
example by calculation of the integral ]2(1>.

We express all considered integrals in terms of eMPLs to all orders

of the dimensional regulator, and present our final results.



5.1. Elliptic polylogarithms

We are interested in the computation of iterated integrals of the

form,

(i doy Ry (21, y(21)) fy ' dwoRo(2, y(22)) ...y " dapRu(n, y(xn))

where R; are rational functions of their arguments and y(x) is an

elliptic curve,

y(z) = |(z — a1)(z — ag)(z — a3)(z — a1) = yu(x),
y(z) = |(z — a1)(z — a)(x — a3) = y3(x)

All iterated integrals can be expressed in terms of eMPLs. In the

complex plane, eMPLs are defined as
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Elliptic polylogarithms are a generalisation of ordinary multiple

polylogarithms (MPLs), defined recursively as,
dt
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By definition we see that MPLs are a subset of eMPLs,
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The case [ = 4.
The recursion starts at Fy( ;x) = 1. By construction, the kernels
©n(c, r) have at most simple poles, and they are (see (Broedel,2017)
for a detailed discussion)
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Some properties of ellitic integrals:

Periods:

d
wy = 2y 22 ; — 2K (1— \),

where K(\) is complete integral of the first kind.

For other roots, the result is a linear combination of wy and wy:



Quasi-periods:
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where E/(\) is complete integral of the second kind and the function
®4(x) has the following form:
@4(33) — (341y (2132 — 81; + 862)
and sy, (aj, as, as, ay) is elementary symmetric polynomial of defree
n.
For other roots, the result is a linear combination of w; and wy:
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Moreover we define,
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where 1 and 0 are vectors with entries equal to 1 and O respectively,
and n = length(I) = length(0).

The function Z4(x) is defined by first introducing an auxiliary
function ®4(x),
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whose primitive is,

Zi(a) = [}, dt (1),
In the next sections we will see that, in our integral representa-

tions, the function ®4(x) appears only in the last (outer) integra-

tion, and only the case ZAED(ZE) = Z4(x) need to be considered.



The case [ = 3.
The recursion starts at F3( ;x) = 1. By construction, the kernels
©n(c, r) have at most simple poles, and they are (see (Broedel,2017)
for a detailed discussion)
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Some properties of ellitic integrals:

Periods:
d
w1 =23 02 C = 2K (\), A=-2L
53 a3q
wy = 23 192 5 = 21K (1 - N),

where K () is complete integral of the first kind.

For other roots, the result is a linear combination of wy and wy:



Quasi-periods:
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and sy (ay, as, as) is elementary symmetric polynomial of defree n.

For other roots, the result is a linear combination of wy and wy:
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The function Z3(x) is defined by first introducing an auxiliary
function ®3(x),

_ 1 1
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whose primitive is,
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As for all iterated integrals, eMPLs satisfy a shuffle algebra, with
the shuffle product defined as, (I = 3,4)

ai, ..., an bi.....b Cl.....C
El /17 , / 7 El /17 . :n,CC _ > _)El /17 9 jl—l_m,ﬁlf
Ay eeny b1, ..., by, F=aLLIb Cly - Cram,

The vector ¢ is the vector obtained by performing all the shuffles

of @ and b, preserving the ordering of the elements of a and b.

Examples:
b1, ..., by by, by, .. by b1, a1, by, ..., by
2 ] 2 I 2 I 2] R
a by, b a, b, b, b by, a, by, .. b

by by, ay. ... by, by by, ... a1, by, by by, ... bm,a
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v, b, d, .. b Wb, ..., d, b Wb, b

9 m?
and
a, as bl bQ ay, as bl bQ ay bl an bg
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ay, ab , b aly, ab, by, b ay, by, as, , b
ay, by, b, as by, a1, ag, by b1, a1, ba, ay b17b27alaaf2
+Ez( o x|+ B x|+ R x|+ B
ay, 01, 2,a2 1,a1,a2,b 1> a1, 2,a2 b1, 2aa1aa2



5.2. Regularisation

As we will see in the next sections we are interested in computing

definite integrals of the form,

OF (v)
O fa)

In some cases individual functions inside the primitive develop di-

0 f(z)de = F(1) — F(0),

vergences when evaluated at the integration bounds, and in order

to compute the definite integral one needs to perform two limits,

oy fle)de = lim F(z) — lim F(z) = Regy, F(z).



5.3. Elliptic polylogarithms and all orders result

Contrary to general cases considered in [CMK] we consider here

an example which clear up the obtained results.

5.3.1. Example

We show how the solution strategy of the previous section works
in practice by considering integral I{Q)(t). The dependence on the

elliptic curve is made explicit by applying the variable change,

17(t) = : 1-xf) ) TP ()
! - e t(1—2?)y(x) |2y () .
where
9 1 1
plr)=1—2" 0<z<l1; ylz)= t2+(1—x2)2:t¢1+t2p2.



The inner integral can be expressed as

221 (ty*(21))
T2 (3) = — [Fdz |
D= 1= 22
All the e-powers can be expanded in ¢
ty*(z)|” % 6_10 [ty*(x)
1 —22] iZ04l 1 — a2’
The resulting logarithm can be expressed in terms of eMPLs,
ty*(x ) ) e d o (ty(2)
= — 1
log |7 log(ty~(0))) + ly dz—~ log | =3
2
2z <t2 <z2 — 1) — 1)
= log (t* + 1) — log(t) + [ dz
( ) )+ 6 12(22 — 1) y(2)?2



The integrand above can be written in terms of the integration
kernels as,

22 [t (22 — 1 ©
tg (Zg ) 2(2)2 ) = él o1 (ai, 2) —ei1(=1,2) —pi1(l, 2),

(4

where we denoted with a; the four roots of the elliptic curve,

Vi—1 t—1 V41 Vit

al = — \/% , A = \/Z , A3 = — \/% , 4 = \/% .
Upon integration we find,
ty?(x) 4 1 1 1
Ly=1 = > bk x| — F x| — Fa|
4 Og 1—513'2 i—1 4 CLZ'VCE 4 _1733 4 1733

+ log (tQ + 1) — log(t) .



The prefactor is
221

y(21)
and, thus, the inner integral has the following form

= —2p_1(00, 21) = k5(21)

. 221 (t(z)
e 2| (212)
y(z1) |1 — 2
_ x &g e 71"
= dzrks(z1) X i Lifz) = > i K% LY

where the primitive K is
—1

O

Ky = —2F,

€T .

)



The evalution of the rest is very siimilar and we have

1+ :
17(t) = Regp Z;.Zio Z!j!] Kyx LY | K5 % Lﬂf ,
where
L5:—§ Ey 1;x + 3E4 x| — 2F, 1;x + Fiy 1;x
i=1 a; — 1
—10g(t2+1),
K, = %Eﬁl _1;x — by _1;x — by 1;x :
1=1 —1 1 1




5.3.1. Same example

We consider the integral ]1(2>(t) when y = y3. The dependence

on the elliptic curve is made explicit by applying the variable change,

2) 2 (1—a)*)
17 (t) = /1 dxs g J2) 3
R L TC I
where
1 P 2,2
p=1—x3, 0<ux3<I; y(xg):xgt—2+(1—x3) Et\/1+tp.
The inner integral can be expressed as
e 1/2—¢
t°(1 — 23) 2 V73
J(2> r3) = — :ngzg e ——/xgdzg + O(¢).
(3) : yl =5 (23) : y(23) 2



' The problem: the function

NG

Y3
is not an element of the Broedel et al basis!!!

We would like to remember that the Broedel et al basis has both
parts: a nonelliptic one and an elliptic one
C3
y3(z)
1

900(07 CL’) -

where the nonelliptic one leads to




But the term
VT
Y3
leads to G(c; f(x)) (with some known f(x)), which cannot be

expressed as combination of

1
;X

)

Cj

Es = G(c¢;;x)  (c; are some numbers)

and, thus, cannot be used as a term in shuffle product.

Indeed, in e-expansion we had

1 dsy (1 + s9)% 2 2
J(2>(pt) ~ olte /}1{2 +e/2 (1 — 59)%¢ - (g >(pt) + 5J1< )(pt) + 0(52) )
52
where
1 1+ t2p2 — tp
JPm) = = log Ry, Ry=
0 (p)=—5log Ry, I M+ 202 + tp

9 1 . 1.
J1< >(p) =3 log” Ry + (o + Ling(—Ry) — 5 Lig(R9).



I So, it is possible that in the case of Elliptic Poly-
logarithms these two representations (based on 4 and
y3), are not completely interchangeable, as they were

in the case of ellitic integrals. !!!

! But it needs additional investigations !!!



5.4. Sunsets

By applying the procedure described above we obtain one of the
main results of this paper, i.e. an explicit expression for the above
integrals in terms of eMPLs valid to all orders of the dimensional

regulator.



5.4.1. J1 92

We obtain the following expression for Ji 9 9,

K -
M* ], 20=1N 72 J1.2.9,
hoo= L1+ 2] 120 - () 1)
9&y 2 1 IS 2
42




(1 R
I 5(t) = Regp ZOZ,],KQ*Ls[KﬂLﬂ ,
I17() = Regg jzoo j;] Ky Ly [Ks = L]
15,31)( t) = Reg()l;oo €,K6 * L6+Reg01:o0 €,K4* Lt
]1(,32>( t) = Rego,1 Z - EZJ,JK7 « L | Ko % L4]
1+
+Regy 1 OZOOEZ']' [Kg*[f?]

where K; and L; are depth one eMPLs.



Since the integrals [9(75) and [@(t) contribute to j1’2’2 with

the corresponding factors, it is convenient to present also

[t; 8 ]{2)( t) = Regy. 1 Z -, 6;7[@ * E% [K5 * Lﬂf ;
(; 8]1(,31>( t) = Reg()l;oo ,K6 *L6+Reg01zooo |K4* Lt
(;)8 ]g( t) = Reg, 1, Z -, GZJ'] K7 % L8 {Kg * Lzﬂl

+Regy 5200 6@,7 Lk | Ks * Lé]f »

where,

Ls=Ls+2logt —log2, Lj;=L;+logt—1log2 (k=6,7,8).



5.4.2. Results for L, and K,

Here we provide the definitions for the eMPLs expressions

1 1 1
Li=E, | — 28y | x|+ Byl ],
—1 0 1

4 1 1 1
LQZZE4 , L —2E4 . L —2E4 , L
i=1 a; —1 1

4 1 1 1 1
Ly=—> F, x|+ 3E, x| —2Ey x|+ 3E, T
i=1 a; —1 0 1

— log <t2 + 1) + 2log(t),

4 1 1 1
Ly=> E x| — By o | — By x
i=1 a; —1 1

4 1 1 1 1
Ly=—-> FE, x|+ 3k, x| — 20, x|+ 3k, T
i=1 a; —1 0 1

— log <t2 + 1) :

1 1 1
L6—2E4( 1;1’)—2E4(0;$)+2E4<1;1’),

14 1 1 1 1
L;=—-> FE, x|+ 2F, x| — 20, x|+ 28, T
2i=1 a; —1 0 1

+ log (t2 + 1) — 2log(t),

+ log <t2 + 1) — log(t),




—1 —1 1
Ky = Ey x| — By x| — By T

—1 —1 1
Ky = Fy x| — By w—Ei;ﬂ,




K¢=F ! E !
— N s L
6 4 1 4 1

We see that the integral J; 9 2 in the form of the elliptic integrals
is finite since K| = K, + Kj and,

t E
11<,11>(?5) — (2) 11<,1() Regmz

K2 s« (LY — LE) ~ O(e).

1 'Kl*(LZ 226>



6. Conclusions

In this paper we studied a family of sunrise integrals with two dif-
ferent internal masses and pseudo-threshold kinematics in dimen-
sional regularisation. These integrals admit a closed-form solution
in terms of hypergeometric functions (Kalmykov,2008)

and we use this representation as the starting point of our analysis.



e In particular, we show that all corresponding hypergeometric
functions can be represented in terms of one- and two-fold in-

tegral representations.

e In each c-order, these representations can be represented as
multiple integrals containing the elliptic kernel and Goncharov's
MPLs in their integrands (see (Besuglov)). In the first two &-
orders under consideration, there are only logarithms and dilog-

arithms.

e Moreover, integral representations make it possible to represent
them as a combination of eMPLs, in the case of y4, which were
obtained using the procedure (Brodel,2017).



In the case of y3, we observed an appearence of a
term, which is not an element of the Broedel et al
basis..

So, in the case, the Broedel et al basis is not full. Some (nonel-

liptic) term should be added.

Il So, it is possible that in the case of Elliptic
Polylogarithms these two representations (based
on y; and y3), are not completely interchangeable,

as they were in the case of elliptic integrals. !!!

! But it needs additional investigations !!!



