RECENT RESULTS FROM THE CMD-3 DETECTOR AT VEPP-2000 COLLIDER

Peter A. Lukin

on behalf of CMD-3 collaboration

Budker Institute of Nuclear Physics Novosibirsk State University

Институт ядерной физики имени Г. И. Будкера СО РАН

Outline

Motivation
Collider and Detector
Experiment
Physics Results
Conclusion

(g-2)/2 of muon (Motivation)

VEPP-2000 Collider

	Parameters at 1 GeV		
	Design	Achieved	
Circumference	24.388 m		
Beam energy, MeV	150-1000	160-1005	
N of bunches	1 imes 1		
N of particles / bunch	1×10^{11}	$0.9 imes 10^{11}$	
Luminosity, $cm^{-2}s^{-1}$	$1 imes 10^{32}$	$0.5 imes 10^{32}$	

- Round beams concept
- 13 T solenoids for FF
- $E_{\rm beam}$ controled by CBS ($\sigma_{\sqrt{s}} = 0.1\,{\rm MeV}$)

Energy measurement

Starting from 2012, energy is monitored continuously using Compton backscattering

M.N. Achasov et al. arXiv:1211.0103v1 [physics.acc-ph] 1 Nov 2012

Detector CMD-3

7

Experiment 2011-2021

Luminosity Integral collected in 2011-2021 is 370 pb⁻¹ and doubled in 2022

Luminosity collected in 2011-2021

CMD-3 published results

Exclusive channels $e^+e^- \rightarrow hadrons$

At VEPP-2000 we do exclusive measurement of $\sigma(e^+e^- \rightarrow hadrons)$.

• 2 charged

$$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}, K^{+}K^{-}, K_{S}K_{L}, p\overline{p}$$
• 2 charged + γ 's

$$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}, \pi^{+}\pi^{-}\eta, K^{+}K^{-}\pi^{0}, K^{+}K^{-}\eta, K_{S}K_{L}\pi^{0}, \pi^{+}\pi^{-}\pi^{0}\eta,$$

$$\pi^{+}\pi^{-}\pi^{0}\pi^{0}, \pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}, \pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$$
• 4 charged

$$e^+e^- \to \pi^+\pi^-\pi^+\pi^-, K^+K^-\pi^+\pi^-, K_SK^*$$

- 4 charged + γ 's $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0, \pi^+\pi^-\eta, \pi^+\pi^-\omega, \pi^+\pi^-\pi^+\pi^-\pi^0\pi^0, K^+K^-\eta, K^+K^-\omega$
- 6 charged

$$e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$$

γ's only

$$e^+e^- \rightarrow \pi^0 \gamma, \eta \gamma, \pi^0 \pi^0 \gamma, \pi^0 \eta \gamma, \pi^0 \pi^0 \gamma, \pi^0 \pi^0 \eta \gamma$$

other

$$e^+e^- \rightarrow n\overline{n}, \pi^0 e^+ e^-, \eta e^+ e^-$$

Dominant channel $e^+e^- \rightarrow \pi^+\pi^-$

Analysis strategy

- **v** 2 tracks with $1 \le \Theta \le \pi 1$
- Separation of $e/\mu/\pi/cosmic$
- Two independent approaches:
 - Separation by momenta
- Separation by energy depositions
- Binned likelihood minimization:

$$-\ln L = -\sum_{ ext{bins}} n_i \ln igg[\sum_{\substack{X=ee,\ \mu\mu,\ \pi\pi,\ ext{bg}}} N_X f_X(p^+,\ p^-) igg] + \sum_X N_X$$

Dominant channel $e^+e^- \rightarrow \pi^+\pi^-$

Separation by momentum

• take e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$ and $\pi^+\pi^-\pi^0$ PDFs from MC generators smeared by the detector resolution.

cosmic PDF from data

Separation by **energy deposition** in LXe

- No need for PDFs from MC
- Energy deposition includes
 FSR
- Fit data by analytical functions

The analysis on its final stages. Additional local consistency checks should be fulfilled. The aim systematic uncertainty is 0.5 %.

Dominant channel $e^+e^- \rightarrow \pi^+\pi^-$

vs, GeV

Analysis of $e^+e^- \rightarrow 4\pi$

yields

- ▼ Simultaneous unbinned amplitude analysis of 150 000 $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ events and 250 000 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ events
- Amplitudes accounted for in the likelihood function:
- $\omega[1^{--}]\pi^0[0^{++}]$ (only $\pi^+\pi^-2\pi^0$)
- $a_1(1260)[1^+]\pi[0^-]$
- $\rho[1^{--}]f^0/\sigma[0^{++}]$
- $\rho f_2(1270)[2^{++}]$
- $\rho^+ \rho^-$ (only $\pi^+ \pi^- 2\pi^0$)
- $h_1(1170)[1^{+-}]\pi^0$ (only $\pi^+\pi^-2\pi^0$)

Study of internal dynamics

∖ intermediate state final state (fs)	1 ρ',ω',φ'	1 ρ(770)	1 ω(782)	1 φ(1020)	1- K*(890)	1+ K1(1270)	1++ a1(1260)	1++ f1(1285)	0+ f0(980)	0+ a0(980)	0-+ n, n'(958)
π+π-	fs	fs	fs	fs							
π+π-π0	fs	2π	fs	fs							fs
π+π-πΟπΟ	fs	π±π0, π+π-	π+π-π0				π-π0π0	fs	πΟπΟ		
π+π-π+π-	fs	π+π-					π-π+π-	fs	π+π-		
5π	fs	2π	3π								fs, π+π-π(
6π	fs	π±π0, π+π-					3π				π+π-π0
7π	fs		3π								π+π-π0
8π	fs										
K+K-, KSKL	fs	fs	fs	fs							
2ΚπΟ, 2Κη	fs			2K	Κπ						
2Κ2π	fs	2π		2K	Κπ	Κ2π			2π		
2K3π	fs	2π			Κπ			2Κπ	2K	2K	
nucleon bar nucleon	fs										
πγ, ηγ, η'γ	fs	fs	fs	fs							
πee, nee, n'ee	fs	fs	fs	fs							
πΟπΟγ, πΟηγ	fs		πΟγ	fs					πΟπΟ	πΟη	
π+π-η	fs	fs, 2π		fs				fs			fs
π+π-πΟη	fs	π+π-	π+π-π0	π+π-π0						πΟη	
μ+μ-π0, μ+μ-η, 4πη, 2π2η	fs										

.

$$\int \mathcal{L}dt = 56.7 \ pb^{-1}$$

$$E_{c.m.} = 1.6 - 2.0 \ GeV$$
Syst. Error = 13 - 20%
Phys.Lett.B 792 (2019) 419-423

ơ(e⁺e⁻→ 2(π⁺π⁻)ω), nb 10 10 $\sigma(e^+e \rightarrow 2(\pi^+\pi^-)\eta), nb$ 0 8 1 10.4 0.05 0.2 2100 1800 2000 1600 1700 1800 1900 2000 2100 1600 1700 1900 Ec.m., MeV Ec.m., MeV

17

1000

1200

Analysis of
$$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$$

First measurement of total $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$ cross section. Systematic error is 15%.

 $e^+e^- \rightarrow \omega(1650) \rightarrow \rho(1450,1700)\pi \rightarrow \rho(770)\eta\pi$

Peter A. Lukin Recent results from CMD-3 International Conference on QFT, HEP, and Cosmology **21**

R(s) at nucleon antinucleon threshold

VEPP-2000: unique ability for detailed scan of ppbar and nnbar threshold.

- observed the sharp change of $e^+e^- \rightarrow p\bar{p}$, $3(\pi^+\pi^-)$, $K^+K^-\pi^+\pi^-$
- width is ~1 MeV consistent with energy resolution
- puzzle why there is no change in $e^+e^- \rightarrow 2(\pi^+\pi^-)$?
- We plan to do comprehensive study of this energy range

Search for e⁺e⁻ → D(2007)⁰ We are trying to probe also charm-physics

A. Khodjamirian et al, <u>JHEP11(2015)142</u>: SM: Br($D^* \rightarrow e^+e^-$) >= 5. × 10⁻¹⁹ New Physics with Z' : Br($D^* \rightarrow e^+e^-$) < 2.5 × 10⁻¹¹

But, they didn't take into account 10² -10⁴ factor: detection efficiency and beam energy spread

They did estimation for e+e- collider with $\int L = 1 \text{fb}^{-1}$: Br($D^* \rightarrow e^+e^-$)> 4 × 10⁻¹³

 $D^{*}_{0} \rightarrow D_{0} \gamma$: Br(D^{*}→ee) < 5.2*10⁻⁶ D^{*}_{0} → D_{0} \pi^{0}: Br(D^{*}→ee) < 1.7*10⁻⁶

First time UL measurement

Conclusion

- □ The VEPP-2000 collider delivered about 370 pb⁻¹ of integrated luminosity in the energy range 0.32 2.01 GeV to the CMD-3 detector from 2010 2021 and doubled the integral in 2022. Today VEPP-2000 is only working on direct scanning of the region for measurement of exclusive $\sigma(e^+e^- \rightarrow hadrons)$.
- The VEPP-2000 results will help to reduce error of the hadronic contribution to vacuum polarization and it is independent cross check of ISR data, future lattice, space-like.
- □ The e⁺e⁻ $\rightarrow \pi^+\pi^-$ cross section is measured with systematic uncertainty better than 1%. Publication of a largenumber of precise measurements are expected soon.

Peter A. Lukin Recent results from CMD-3

International Conference on QFT, HEP, and Cosmology 24

Thank You for Your attention! Stay tuned!

Backup slides

C.m. energy range is 0.32-2.0 GeV; unique optics – "round beams" Design luminosity is $L = 10^{32} 1/cm^2 s @ \sqrt{s} = 2$ GeV Experiments with two detectors, CMD-3 and SND, started by the end of 2010

1.28 - 2.007 GeV

27

50 1/pb

2017 data taking

2017-2018 2011-2013

0.55 - 1.00 GeV > 50 1/pb

Overview of CMD-3 data taking runs

Dominant channel: $e^+e^- \rightarrow \pi^+\pi^-$

"Open box", when systematics of both methods < 1%

Our goal is to have systematic error at the level ~ 0.33%

Dominant Channel: $e^+e^- \rightarrow \pi^+\pi^-$. Statistics

Statistical accuracy $\Delta\sigma/\sigma$ in 20 MeV bins

R(s) at $N\overline{N}$ threshold

One of first results from CMD-3:

- Sudden drop of $e^+e^- \rightarrow 3(\pi^+\pi^-)$ cross section at $N\overline{N}$ threshold
- Confirmed, that $p\bar{p}$ production cross section increases quickly at threshold
- Preliminary studies of dynamics of $e^+e^- \rightarrow 3(\pi^+\pi^-)$, hint of energy dependent dynamics in 1.7-1.9 GeV energy range

2017: $e^+e^- \rightarrow 3(\pi^+\pi^-)$ at $N\bar{N}$ threshold

In 2017, CMD-3 collected 13 1/pb in the narrow energy range around $N\overline{N}$ threshold

- the sharp rise of $e^+e^- \rightarrow p\bar{p}$ crosssection is confirmed
- the sharp drop of $e^+e^- \rightarrow 3(\pi^+\pi^-)$ cross-section is confirmed
- we see the similar cross-section drop in other channels

NN threshold in $2(\pi^+\pi^-)$ reaction

arXiv:1808.00145 [hep-ex]

Figure 4: The $e^+e^- \rightarrow 2(\pi^+\pi^-)$ cross section measured with the CMD-3 detector. Lines show the $p\bar{p}$ and $n\bar{n}$ thresholds.

We continue search for the NNbar threshold indication in other multi-hadron reactions

Conclusion

- The goal of the CMD-3 experiment at the VEPP-2000 is to provide exclusive measurement of e⁺e⁻ → hadrons from 0.32 to 2.0 GeV
- In 2011-2013 CMD-3 has collected 60 pb⁻¹ in the whole energy range $0.32 \le \sqrt{s} \le 2.0$ GeV, available at VEPP-2000.
- In 2013-2016 the collider and the CMD-3 detector have been upgraded and the data taking was resumed in 2017 and > 100 pb⁻¹ were collected so far.
- Data analysis of exclusive modes of e⁺e⁻ → hadrons is in progress. Many results have been published.

$\sigma(e^+e^- \rightarrow hadrons)$ and the hadronic contribution to a_{μ}

So far, the hadronic contribution to a_{μ} is calculated by integrating experimental cross-section $\sigma(e^+e^- \rightarrow hadrons)$.

Weighting function $\sim 1/s$, therefore lower energies contribute the most.

Many sources of data:

- Novosibirsk: CMD-2 and SND (VEPP-2M), CMD-3 and SND (VEPP-2000)
- Factories: Babar, KLOE
- BES-III, KEDR

$$R(s) = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

√s (GeV)

Recent result from CMD-3:

- $K_S K_L$ at φ , systematic precision 1.8%
- K^+K^- at φ , systematic precision 2.0% (2.8%)

K^+K^- : comparison with other measurements

 $K_S K_L$ at φ is consistent between different experiments, but there is discrepancy in K^+K^- channel.

New CMD-3 K^+K^- cross-section is above CMD-2 and BaBar, but is consistent with isospin symmetry: • $R_{SND} = 0.92 \pm 0.03(2.6\sigma)$

$$R = \frac{g_{\varphi K^+ K^-}}{g_{\varphi K_S K_L} \sqrt{Z(m_{\varphi})}} = 0.990 \pm 0.017 \qquad \bullet R_{CMD-2} = 0.943 \pm 0.013(4.4\sigma)$$
$$\bullet R_{BaBar} = 0.972 \pm 0.017(1.5\sigma)$$

Possible explanation: CMD-2 trigger correction was underestimated; due to different trigger configuration there is no such correction at CMD-3

$K_S K_L$ and $K^+ K^-$: $\rho - \varphi$ interference

 $\rho - \varphi$ interference can be directly observed:

$$R_{c/n} = \sigma(e^+e^- \to K^+K^-) \times \frac{p_{K^0}^3(s)}{p_{K^{\pm}}^3(s)} \times \frac{1}{Z(s)} - \delta \times \sigma(e^+e^- \to K_S K_L)$$

• $r_{\rho,\omega} = 0.91 \pm 0.04$

deviation of SU(3) relations $g_{\omega K^+K^-} = g_{\rho K^+K^-} = -g_{\varphi K^+K^-}/\sqrt{2}$

• $\delta = 0.989 \pm 0.003$

test of systematic errors

CMD-3 published results from 2011-2013

More CMD-3 preliminary results from 2011-2013

$e^+e^- \rightarrow \pi^+\pi^-$: systematics

Source	Goal	Current estimation	Comment			
Radiative correction	0.2%	0.2% (cross-section) 0.0-0.4% (mom.separation)	To-do: more MCGPJ improvement, comparison to data			
Event separation	0.2%	0.1-0.5% (mom.separation) ~1.5% (energy separation)	To-do: improve energy separation			
Fiducial volume	0.1%	ok	Two independent subsystems to fix fiducial volume			
Beam energy	0.1%	ok	Continuous monitoring via Compton backscattering			
Pion corrections (decay, nucl.int.)	0.1%	0.1% - nucl.interations 0.6-0.3% - decays al low energies	To-do: improve reconstruction of decay events			
Combined	0.33%	0.4-0.9% (mom.sep.) 1.5% (energy sep.)	open box when both <1%			

CMD-3 Performance (2011-2013)

- 1.0-1.3 T magnetic field
- Tracking: $\sigma_{R\varphi} \sim 100 \,\mu, \sigma_z \sim 2 3 \,\text{mm}$
- Combined EM calorimeter (LXE, Csl, BGO), 13.5 X₀

$$rac{}{} \sigma_{E}/E \sim 3\% - 10\%$$

$$\succ \sigma_{\Theta} \sim 5 \text{ mrad}$$

WLS fiber

optical gel

