What Quantum Strings can tell us about Quantum Gravity

Yuri Makeenko (ITEP)

Based on:

- Y. M. arXiv:2204.10205 [hep-th]
- J. Ambjørn, Y. M. MPLA 36, 2150136 (2021) [arXiv:2103.10259]
- Y. M. Nucl. Phys. B 967, 115398 (2021) [arXiv:2102.04753]
- Y. M. JHEP 07, 104 (2018) [arXiv:1802.07541]
- J. Ambjørn, Y. M. IJMPA 32, 1750187 (2017) [arXiv:1709.00995]
- J. Ambjørn, Y. M. Phys. Lett. B 770, 352 (2017) [arXiv:1703.05382]
- J. Ambjørn, Y. M. Phys. Lett. B 756, 142 (2016) [arXiv:1601.00540]
- J. Ambjørn, Y. M. Phys. Rev. D 93, 066007 (2016) [arXiv:1510.03390]

Two no-go theorems for string existence

inherited from 1980's

- Non-perturbative lattice regularization (by dynamical triangulation) scales to a continuum string for $d \leq 1$ but does not for d > 1 (same for hypercubic latticization of Nambu-Goto string in d > 2) Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)
- Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989) string susceptibility index of (closed) Polyakov's string is not real for 1 < d < 25

$$\gamma_{\text{str}} = (1-h) \frac{d-25 - \sqrt{(d-1)(d-25)}}{12} + 2$$
 genus h

Two no-go theorems for string existence

inherited from 1980's

- Non-perturbative lattice regularization (by dynamical triangulation) scales to a continuum string for $d \leq 1$ but does not for d > 1 (same for hypercubic latticization of Nambu-Goto string in d > 2) Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)
- Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989) string susceptibility index of (closed) Polyakov's string is not real for 1 < d < 25

$$\gamma_{\text{str}} = (1-h) \frac{d-25 - \sqrt{(d-1)(d-25)}}{12} + 2$$
 genus h

The presented solutions rely on subtleties in Quantum Field Theory enjoying diffeomorphism invariance: Strings(!) and Gravity(?) \Longrightarrow

1) Continuum limit is not as in Quantum Field Theory: Lilliputian 2) The Nambu-Goto and Polyakov strings differ quantumly: higher derivative terms $\sim \Lambda^{-2}$ in emergent action revive

2. Mean-field ground state of bosonic string

Nambu-Goto versus Polyakov strings

Polyakov string is quadratic in X^{μ} (independent metric tensor ρ_{ab})

$$S = \frac{K_0}{2} \int \mathrm{d}^2 \omega \sqrt{\rho} \rho^{ab} \partial_a X \cdot \partial_b X$$

Nambu-Goto string (plus Lagrange multiplier λ^{ab})

$$K_0 \int d^2 \omega \sqrt{\det \partial_a X} \cdot \partial_b X = K_0 \int d^2 \omega \sqrt{\rho} + \frac{K_0}{2} \int d^2 \omega \lambda^{ab} \left(\partial_a X \cdot \partial_b X - \rho_{ab} \right)$$

World-sheet parameters $\omega_1, \omega_2 \in \omega_L \times \omega_\beta$ rectangle

Closed bosonic string winding once around compactified dimension of length β , propagating (Euclidean) time L (cylinder or torus). No tachyon if β is large enough

Usual classical ground state

$$X^{\mu} = X^{\mu}_{CI}, \qquad [\rho_{ab}]_{CI} = \partial_a X_{CI} \cdot \partial_b X_{CI}, \qquad \lambda^{ab}_{CI} = \rho^{ab}_{CI} \sqrt{\rho_{CI}}$$

$$\lambda^{ab}_{CI} = \delta^{ab} \text{ in conformal gauge for } \omega_L = L, \ \omega_\beta = \beta$$

The two string formulations are equivalent classically and at one loop

Induced (or emergent) action

Gaussian path integral over X^{μ}_{q} by splitting $X^{\mu} = X^{\mu}_{cl} + X^{\mu}_{q}$:

$$S_{\text{ind}} = K_0 \int d^2 \omega \sqrt{\rho} + \frac{K_0}{2} \int d^2 \omega \lambda^{ab} \left(\partial_a X_{\text{cl}} \cdot \partial_b X_{\text{cl}} - \rho_{ab} \right)$$
$$+ \frac{d}{2} \text{tr} \log \mathcal{O}, \qquad \mathcal{O} = -\frac{1}{\sqrt{\rho}} \partial_a \lambda^{ab} \partial_b.$$

Operator \mathcal{O} reproduces the Laplacian Δ for $\lambda^{ab} = \rho^{ab} \sqrt{\det \rho}$

Additional ghost determinant in the conformal gauge $\rho_{ab} = \rho \delta_{ab}$

$$-\frac{1}{2} \operatorname{tr} \log \left(-\Delta_a^b + \frac{1}{2} (\Delta_a^b \log \rho) \right)$$

Induced (or emergent) action coincides with effective action for smooth fields

2D determinants diverge and has to be regularized

Regularization of determinants

Proper-time regularization of the trace

$$\operatorname{tr} \log \mathcal{O}|_{\operatorname{reg}} = -\int_{a^2}^{\infty} \frac{\mathrm{d}\tau}{\tau} \operatorname{tr} \mathrm{e}^{-\tau \mathcal{O}}, \qquad \Lambda^2 = \frac{1}{4\pi a^2}$$

Pauli-Villars regularization of the trace

Ambjørn, Y.M. (2017)

$$\det(\mathcal{O})|_{\text{reg}} \equiv \frac{\det(\mathcal{O})\det(\mathcal{O}+2M^2)}{\det(\mathcal{O}+M^2)^2}$$

$$\operatorname{tr} \log \mathcal{O}|_{\operatorname{reg}} = -\int_0^\infty \frac{\mathrm{d}\tau}{\tau} \operatorname{tr} \mathrm{e}^{-\tau \mathcal{O}} \left(1 - \mathrm{e}^{-\tau M^2} \right)^2, \qquad \Lambda^2 = \frac{M^2}{2\pi} \log 2.$$

is convergent as finite regulator mass M and divergent as $M \to \infty$.

For Pauli-Villars regularization beautiful diagrammatic technique and det's can be exactly computed for certain metrics by the Gel'fand-Yaglom technique to compare with the Seeley expansion

$$\left\langle \omega \right| e^{-\tau \mathcal{O}} \left| \omega \right\rangle = \frac{1}{4\pi\tau} \frac{1}{\sqrt{\det \lambda^{ab}}} + \frac{R}{24\pi} + \mathcal{O}(\tau)$$

which starts with the term $1/\tau$ in 2 dimensions. For $\tau \sim 1/\Lambda^2$ higher terms are suppressed as R/Λ^2 only for smooth fields but revive if not

Mean-field ground state

Ambjørn, Y.M. (2017)

For diagonal and constant $\lambda^{ab} = \bar{\lambda} \delta^{ab}$ and $\rho_{ab} = \bar{\rho} \delta_{ab}$

$$S_{\text{eff}} = \frac{K_0}{2} \bar{\lambda} \left(\frac{L^2}{\omega_L^2} + \frac{\beta^2}{\omega_\beta^2} \right) \omega_L \omega_\beta + K_0 (1 - \bar{\lambda}) \bar{\rho} \omega_L \omega_\beta$$
$$- \left(\frac{d}{2\bar{\lambda}} - 1 \right) \Lambda^2 \bar{\rho} \omega_L \omega_\beta - \frac{\pi (d - 2)}{6} \frac{\omega_L}{\omega_\beta}$$

Boundary terms omitted for $L \gg \beta$.

The minimum is reached at (quantum ground state)

$$\bar{\lambda} = \frac{1}{2} \left(1 + \frac{\Lambda^2}{K_0} + \sqrt{\left(1 + \frac{\Lambda^2}{K_0}\right)^2 - \frac{2d\Lambda^2}{K_0}} \right)$$
$$\bar{\rho} \propto \frac{\bar{\lambda}}{\sqrt{\left(1 + \frac{\Lambda^2}{K_0}\right)^2 - \frac{2d\Lambda^2}{K_0}}}$$
$$\omega_\beta = \frac{\omega_L}{L} \sqrt{\beta^2 - \frac{\pi(d-2)}{3K_0\bar{\lambda}}}$$
$$S_{\rm mf} = K_0 \bar{\lambda} L \sqrt{\beta^2 - \frac{\pi(d-2)}{3K_0\bar{\lambda}}} \qquad \text{(Alvarez-Arvis)}$$

Mean-field ground state (cont.)

The approximation describes a mean field which takes into account an infinite set of pertubative diagrams about the classical vacuum. Then λ^{ab} and ρ_{ab} do not fluctuate which becomes exact at large d.

It is like 2d O(N) sigma-model at large N where the Lagrange multiplier does not fluctuate (summing the bubble graphs). The large-N vacuum is very closed to the physical vacuum even for N = 3.

The minimization over ω_{β}/ω_L is also needed at the saddle point.

The square root is well-defined for $d \ge 2$ if

$$K_0 > K_* = \left(d - 1 + \sqrt{d^2 - 2d}\right) \wedge^2 \stackrel{d \to \infty}{\to} 2d \wedge^2$$

Perturbation theory is recovered by expanding in $1/K_0 \sim \hbar$. Then $\bar{\lambda}$ ranges between 1 (classical) and (quantum) value

$$\bar{\lambda}_* = \frac{1}{2} \left(d - \sqrt{d^2 - 2d} \right) \stackrel{d \to \infty}{\to} \frac{1}{2}$$

3. Two scaling regimes:Gulliver's vs. Lilliputian

Lattice-like scaling limit (Gulliver's)

The ground state energy (Alvarez-Arvis)

$$E_0(\beta) = K_0 \bar{\lambda} \sqrt{\beta^2 - \frac{\pi (d-2)}{3K_0 \bar{\lambda}}}$$

does not scale because $K_0 > K_* \sim \Lambda^2$ for $\overline{\lambda}$ to be real $(> \overline{\lambda}_*)$. Let

$$\beta^2 > \beta_{\min}^2 = \frac{\pi(d-2)}{3K_*\bar{\lambda}_*}, \qquad \bar{\lambda}_* = \frac{1}{2}\left(d - \sqrt{d^2 - 2d}\right) \stackrel{d \to \infty}{\to} \frac{1}{2}$$

for not to have a tachyon. For the smallest possible value $\beta = \beta_{\min}$

$$E_0(\beta) \propto \frac{K_0 \overline{\lambda}}{\Lambda} \sqrt{\overline{\lambda} - \overline{\lambda}_*}$$

scales to m if

$$\bar{\lambda} - \bar{\lambda}_* \propto \frac{m^2}{\Lambda^2}, \qquad K_0 - K_* \propto \frac{m^4}{\Lambda^2}$$

The scaling does not exist for excited states (larger values of β) and thus is particle-like similar to lattice regularizations of a string, where only the lowest mass scales to finite, excitations scale to infinity Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)

Lattice-like scaling limit (Gulliver's)

The ground state energy (Alvarez-Arvis)

$$E_N(\beta) = K_0 \bar{\lambda} \sqrt{\beta^2 + \frac{1}{K_0 \bar{\lambda}} \left(-\frac{\pi(d-2)}{3} + 8N\right)}$$

does not scale because $K_0 > K_* \sim \Lambda^2$ for $\overline{\lambda}$ to be real $(> \overline{\lambda}_*)$. Let

$$\beta^2 > \beta_{\min}^2 = \frac{\pi(d-2)}{3K_*\bar{\lambda}_*}, \qquad \bar{\lambda}_* = \frac{1}{2}\left(d - \sqrt{d^2 - 2d}\right) \stackrel{d \to \infty}{\to} \frac{1}{2}$$

for not to have a tachyon. For the smallest possible value $\beta = \beta_{min}$

$$E_0(\beta) \propto \frac{K_0 \overline{\lambda}}{\Lambda} \sqrt{\overline{\lambda} - \overline{\lambda}_*}$$

scales to m if

$$\overline{\lambda} - \overline{\lambda}_* \propto \frac{m^2}{\Lambda^2}, \qquad K_0 - K_* \propto \frac{m^4}{\Lambda^2}$$

The scaling does not exist for excited states (larger values of β) and thus is particle-like similar to lattice regularizations of a string, where only the lowest mass scales to finite, excitations scale to infinity Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)

Lilliputian string-like scaling limit

Let us "renormalize" the units of length

$$L_R = \sqrt{\frac{\overline{\lambda}}{\overline{\lambda} - \overline{\lambda}_*}} L, \qquad \beta_R = \sqrt{\frac{\overline{\lambda}}{\overline{\lambda} - \overline{\lambda}_*}} \beta$$

to obtain finite effective action

$$S_{\rm mf} = K_R L_R \sqrt{\beta_R^2 - \frac{\pi (d-2)}{3K_R}}, \quad K_R = K_0 (\bar{\lambda} - \bar{\lambda}_*)$$

The renormalized string tension K_R scales to finite

$$K_0 \to K_* + \frac{K_R^2}{2\Lambda^2 \sqrt{d^2 - 2d}}, \quad K_* = \left(d - 1 + \sqrt{d^2 - 2d}\right) \Lambda^2 \stackrel{d \to \infty}{\to} 2d\Lambda^2$$

reproducing the Alvarez-Arvis spectrum of continuum string

The average area is also finite

$$\langle Area \rangle = L_R \frac{\left(\beta_R^2 - \frac{\pi(d-2)}{6K_R}\right)}{\sqrt{\beta_R^2 - \frac{\pi(d-2)}{3K_R}}}$$

 \Rightarrow minimal area for large β_R and diverges if $\beta_R^2 \rightarrow \pi (d-2)/3K_R$

The Lilliputian world

Like for the zeta-function regularization except for nonlinearities, but

$$\text{length} = \sqrt{\frac{\bar{\lambda} - \bar{\lambda}_*}{\bar{\lambda}}} \,\text{length}_R \propto \frac{\sqrt{K_R}}{\Lambda} \,\text{length}_R$$

in target space which is of order of the cutoff (\Rightarrow Lilliputian)

Nevertheless, the cutoff (in parameter space) $\Delta \omega = 1/(\Lambda \sqrt[4]{g})$ fixes maximal number of modes in the mode expansion to be

$$n_{\rm max} \sim \Lambda \sqrt[4]{g} \omega_{\beta}$$

Classically $\sqrt[4]{g}\omega_{\beta} = \beta$ reproducing Brink-Nielsen (1973) but

Quantumly
$$\sqrt[4]{g}\omega_{\beta} \propto \frac{\beta}{\sqrt{\overline{\lambda} - \overline{\lambda}_*}} = \frac{\sqrt{K_0}\beta}{\sqrt{K_R}}$$
 is much larger

- Continuum because infinitely smaller distances can be probed (classical music can be played on the Lilliputian strings)
- Gulliver's tools are too coarse to resolve the Lilliputian world (this is why lattice string regularizations of 1980's never reproduce canonical quantization)

4. Instability of classical ground state

Semiclassical energy

Brink, Nielsen (1973)

Semiclassical (or one-loop) correction due to zero-point fluctuations

$$S_{1l} = \left[K_0 - \frac{(d-2)}{2} \Lambda^2 \right] L\beta - \frac{\pi (d-2)L}{6\beta}$$

bulk term Casimir energy

To make it finite, it is introduced the renormalized string tension

$$K_R = K_0 - \frac{(d-2)}{2}\Lambda^2$$

which is kept finite as $\Lambda \to \infty$. Then it is assumed it works order by order of the perturbative expansion about the classical ground state, so K_R can be made finite by fine tuning K_0 .

We see however from the mean-field formula

$$S_{\rm mf} = K_0 \bar{\lambda} L \sqrt{\beta^2 - \frac{\pi (d-2)}{3K_0 \bar{\lambda}}}$$

that S_{mf} never vanishes with changing K_0 (except for $\beta = \beta_{min}$). Thus the one-loop correction simply lowers for d > 2 the energy of the classical ground state which may indicate its instability.

Effective potential

To check stability of the ground state, add the source term like in QFT

$$S_{\rm src} = \frac{K_0}{2} \int \mathrm{d}^2 \omega \, j^{ab} \rho_{ab}$$

defining the field

$$\rho_{ab}(j) = -\frac{2}{K_0} \frac{\delta}{\delta j^{ab}} \log Z.$$

Minimizing for constant $j^{ab} = j\delta^{ab}$ we find Ambjørn, Y.M. (2017)

$$\bar{\lambda}(j) = \frac{1}{2} \left(1 + j + \frac{\Lambda^2}{K_0} \right) + \sqrt{\frac{1}{4} \left(1 + j + \frac{\Lambda^2}{K_0} \right)^2 - \frac{d\Lambda^2}{2K_0}}$$

$$\bar{\rho}(j) = \frac{\bar{\lambda}(j)}{\sqrt{\left(1+j+\frac{\Lambda^2}{K_0}\right)^2 - \frac{2d\Lambda^2}{K_0}}} \qquad \bar{\lambda}(\bar{\rho}) = \sqrt{\frac{d\Lambda^2}{2K_0}}\sqrt{\frac{\bar{\rho}}{\bar{\rho}-1}}$$

in the mean field approximation for $\omega_L = L$ and $\omega_\beta = \beta \gg 1\sqrt{K_0}$,

Effective potential (cont.)

"Effective potential" is given by the Legendre transformation

$$\Gamma(\bar{\rho}) = -\frac{1}{K_0 L \beta} \log Z - j(\bar{\rho})\bar{\rho}$$

In the mean-field approximation
$$\Gamma(\bar{\rho}) = \left(1 + \frac{\Lambda^2}{K_0}\right)\bar{\rho} - \sqrt{\frac{2d\Lambda^2}{K_0}\bar{\rho}(\bar{\rho} - 1)}$$

Classical vacuum $\bar{\rho} = 1$ is unstable and stable minimum occurs at

 $\bar{\rho}(0) = \bar{\rho}_{m.f.}$ if $K_0 > K_*$ (same value as before)

Near the minimum (global stability)

$$\Gamma(\bar{\rho}) = \left[\left(1 + \frac{\Lambda^2}{K_0} \right)^2 - \frac{2d\Lambda^2}{K_0} \right]^{1/2} + \frac{K_0}{2d\Lambda^2} \left[\left(1 + \frac{\Lambda^2}{K_0} \right)^2 - \frac{2d\Lambda^2}{K_0} \right]^{3/2} [\bar{\rho} - \bar{\rho}(0)]^2$$
Nonlinearity \implies string susceptibility $\gamma_{\text{str}} = 1/2$ for cylinder and torus is quite different from $\gamma_{\text{str}} = 1$ of KPZ-DDK

5. Fluctuations about mean field

Coleman-Weinberg potential

Integrating out X_q^{μ} we get (a part of) the effective action

$$\frac{d}{2} \operatorname{tr} \ln \left[-\frac{1}{\rho} \partial_a \lambda^{ab} \partial_b \right]_{\operatorname{reg}} = \sum_n \frac{1}{n} \cdot \sum_{i=1}^{n-1} \cdot \sum_{i=$$

wavy lines correspond to fluctuations $\delta\lambda^{ab}$ or $\delta\rho$ about ground state

$$\lambda^{ab}(\omega) = \bar{\lambda}\delta^{ab} + \delta\lambda^{ab}, \qquad \rho(\omega) = \bar{\rho} + \delta\rho$$

Same stability of wavy quadratic fluctuations about the mean field as about the classical ground state because of background independence. Positive definite quadratic form for imaginary $\delta \lambda^{ab}$ and real $\delta \rho$

Polyakov's book: typical $\delta \lambda \sim 1/\Lambda$ so λ^{ab} is localized and decouples. Thus only ρ fluctuates (stable fluctuations for 2 < d < 26)

$$S^{(2)} = \frac{1}{16\pi b_0^2} \int \left[(\partial_a \varphi)^2 + 2\mu_0^2 e^{\varphi} \right], \qquad b_0^2 = \frac{6}{26 - d}$$

The private life occurs at distances $\sim \Lambda^{-1}$ but is observable Y.M. (2021)

Path integrating over λ^{ab}

Simplified quadratic action $(\lambda^{z\bar{z}} = 0)$

$$\mathcal{S}^{(2)} = \int \left[\frac{1}{4\pi b_0^2} \partial \varphi \bar{\partial} \varphi + \nu \left(\lambda^{zz} \nabla \partial \varphi + \lambda^{\overline{z}\overline{z}} \bar{\nabla} \bar{\partial} \varphi \right) - d\Lambda^2 \bar{\rho} \, \mathrm{e}^{\varphi} \lambda^{zz} \lambda^{\overline{z}\overline{z}} \right]$$

Integrating out λ^{zz} and $\lambda^{\overline{z}\overline{z}}$

$$\mathcal{S}^{(2)} = \int \left[\frac{1}{4\pi b_0^2} \partial \varphi \bar{\partial} \varphi + \frac{\nu^2}{d\Lambda^2 \bar{\rho}} e^{-\varphi} (\nabla \partial \varphi) (\bar{\nabla} \bar{\partial} \varphi) \right]$$

Integrating by parts (only these two terms are independent)

$$\mathcal{S}^{(2)} = \frac{1}{4\pi b_0^2} \int \left\{ \partial \varphi \bar{\partial} \varphi + 4\varepsilon \,\mathrm{e}^{-\varphi} \left[(\partial \bar{\partial} \varphi)^2 + \partial \varphi \bar{\partial} \varphi \partial \bar{\partial} \varphi \right] \right\}, \quad \varepsilon = \frac{\pi \nu^2 b_0^2}{d\Lambda^2 \bar{\rho}}$$

modulo boundary terms

The first additional term appears for Polyakov's string from the Seeley expansion of the heat kernel but the second does not

Higher-derivative action

Integrating over X^{μ} , ghosts, regulators Y^{μ} , \bar{Y}^{μ} , Z^{μ} and λ^{ab}

$$S = \frac{1}{16\pi b_0^2} \int \sqrt{g} \left[-R \frac{1}{\Delta} R + 2m_0^2 + a^2 R \left(R + \frac{G}{g^{ab}} \partial_a \frac{1}{\Delta} R \partial_b \frac{1}{\Delta} R \right) \right]$$

curvature squared R^2 (Polyakov) + nonlocal $G \neq 0$ (Nambu-Goto) or the beyond Liouville action

$$S = \frac{1}{4\pi b_0^2} \int \left[\partial \varphi \bar{\partial} \varphi + \frac{\mu_0^2}{2} e^{\varphi} + 4\varepsilon e^{-\varphi} (\partial \bar{\partial} \varphi)^2 - 4G\varepsilon e^{-\varphi} \partial \varphi \bar{\partial} \varphi \partial \bar{\partial} \varphi \right]$$

in conformal gauge $\rho_{ab}=\delta_{ab}\bar\rho\,{\rm e}^\varphi$ with worldsheet cutoff $\varepsilon=a^2/\bar\rho$ and $\mu_0^2=m_0^2\bar\rho$

Classically higher-derivative terms vanish for smooth $\varepsilon R \ll 1$ while quartic derivative provides UV cutoff but also interaction with coupling $\varepsilon \Rightarrow$ uncertainties $\varepsilon \times \varepsilon^{-1}$ so they revive quantumly \Rightarrow produce anomalies (yet higher terms do not change – universality)

Smallness of ε is compensated by change of the metric (shift of φ)

6. CFT á la KPZ-DDK

Review of KPZ-DDK

Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989) Liouville action in fiducial (or background) metric \hat{g}_{ab}

$$S_L = \frac{1}{8\pi b^2} \int \sqrt{\hat{g}} \left(\frac{1}{2} \hat{g}^{ab} \partial_a \varphi \partial_b \varphi + q \hat{R} \varphi \right) + \mu^2 \int \sqrt{\hat{g}} \, \mathrm{e}^{\alpha \varphi}$$

$$b^2 = b_0^2 + \mathcal{O}(b_0^4), \quad q = 1 + \mathcal{O}(b_0^2), \quad \alpha = 1 + \mathcal{O}(b_0^2), \quad b_0^2 = \frac{6}{26 - d}$$

are "renormalized" parameters of the effective action. Energy-momentum pseudotensor

$$T_{zz} = \text{matter} + \text{ghosts} - \frac{1}{4b^2} \left(\partial_z \varphi \partial_z \varphi - 2q \partial_z^2 \varphi \right)$$

Background independence: the total central charge

$$d - 26 + 1 + 6\frac{q^2}{b^2} = 0$$

and the conformal weight

weight (
$$e^{lpha arphi}$$
) = $q lpha - b^2 lpha^2$ = 1

$$\implies \qquad \alpha b = \sqrt{\frac{25-d}{24}} - \sqrt{\frac{1-d}{24}}, \qquad q = \alpha^{-1} + b^2 \alpha$$

Energy-momentum tensor

For minimal coupling to gravity Gibbons, Pope, Solodukhin (2019) at G=0

$$-4b_0^2 T_{ab}^{(\min)} = \partial_a \varphi \partial_b \varphi - \frac{1}{2} g_{ab} \partial^c \varphi \partial_c \varphi - \mu_0^2 g_{ab} - \varepsilon \partial_a \varphi \partial_b \Delta \varphi - \varepsilon \partial_a \Delta \varphi \partial_b \varphi + \varepsilon g_{ab} \partial^c \varphi \partial_c \Delta \varphi + \frac{\varepsilon}{2} g_{ab} (\Delta \varphi)^2 - G \varepsilon \partial_a \varphi \partial_b \varphi \Delta \varphi + G \frac{\varepsilon}{2} \partial_a \varphi \partial_b (\partial^c \varphi \partial_c \varphi) + G \frac{\varepsilon}{2} \partial_a (\partial^c \varphi \partial_c \varphi) \partial_b \varphi - G \frac{\varepsilon}{2} g_{ab} \partial^c \varphi \partial_c (\partial^d \varphi \partial_d \varphi)$$

For diffeomorphism invariant action

$$-4b_0^2 T_{ab} = -4b_0^2 T_{ab}^{(\min)} - 2(\partial_a \partial_b - g_{ab} \partial^c \partial_c)(\varphi - \varepsilon \Delta \varphi + G \frac{\varepsilon}{2} g^{ab} \partial_a \varphi \partial_b \varphi) + 2G\varepsilon (\partial_a \partial_b - g_{ab} \partial^c \partial_c) \frac{1}{\Delta} \partial^d (\partial_d \varphi \Delta \varphi)$$

It is conserved and traceless (!) thanks to diffeomorphism invariance

$$T_{zz} \text{ component (in two dimensions)} \qquad \text{Kawai, Nakayama (1993) at G=0} \\ 4b_0^2 T_{zz} = (\partial \varphi)^2 - 2\varepsilon \partial \varphi \partial \Delta \varphi - 2\partial^2 (\varphi - \varepsilon \Delta \varphi) - G\varepsilon (\partial \varphi)^2 \Delta \varphi \\ + 4G\varepsilon \partial \varphi \partial (e^{-\varphi} \partial \varphi \bar{\partial} \varphi) - 4G\varepsilon \partial^2 (e^{-\varphi} \partial \varphi \bar{\partial} \varphi) + G\varepsilon \partial (\partial \varphi \Delta \varphi) \\ + G\varepsilon \frac{1}{\bar{\partial}} \partial^2 (\bar{\partial} \varphi \Delta \varphi) \end{aligned}$$

DDK for the beyond Liouville action

One-loop operator products $T_{zz}(z) e^{\alpha \varphi(0)}$ and $T_{zz}(z) T_{zz}(0)$

Diagrams a) to j) contribute $q\alpha$, diagrams k) contributes $-b^2\alpha^2$ to the conformal weight of $e^{\alpha\varphi(0)}$: $1 = q\alpha - b^2\alpha$ as before

One-loop central charge

Diagrams a) to j) contribute $6q^2/b^2$ to the central charge as usual. Diagram k) contributes usual 1 to the central charge but the nonlocal term in T_{zz} revives

$$2 \cdot \frac{1}{16} \left\langle 2G\varepsilon \partial^{3} \frac{1}{\bar{\partial}} \bar{\partial} \varphi(z) \bar{\partial} \varphi(z) \left[\partial \varphi(0) \partial \varphi(0) - 8\varepsilon \partial \varphi(0) \partial^{2} \bar{\partial} \varphi(0) \right] \right\rangle$$
$$\rightarrow -\frac{G\pi}{2} \partial^{3} \frac{1}{\bar{\partial}} \delta^{(2)}(z) = 3G \frac{1}{z^{4}}$$

modulo subtleties with conformal Ward identities for $G \neq 0$

The second DDK equation is modified (assuming one loop is exact)

$$-\frac{6}{b_0^2} + \frac{6q^2}{b^2} + 1 + 6Gq = 0 \quad \Rightarrow \quad \alpha b = \sqrt{\frac{25 - d - 6Gq}{24}} - \sqrt{\frac{1 - d + 6Gq}{24}}$$

Tremendous cancellations occur thanks to diffeomorphism invariance

7. Algebraic check of DDK

Salieri:

"I checked the harmony with algebra. Then finally proficient in the science, I risked the rare delights of creativity."

A. Pushkin, Mozart and Salieri

Pauli-Villars' regularization

Pauli-Villars' regulators: Grassmann Y, \overline{Y} (M^2) and normal Z ($2M^2$)

$$S_{\text{reg.}} = \frac{1}{16\pi b_0^2} \int \sqrt{g} \left[g^{ab} \partial_a Y \partial_b Y + M^2 Y^2 + \varepsilon (\Delta Y)^2 + G \varepsilon g^{ab} \partial_a Y \partial_b Y R \right]$$

or in conformal gauge

$$S_{\text{reg.}} = \frac{1}{4\pi b_0^2} \int \left[\partial Y \bar{\partial} Y + \frac{M^2}{4} e^{\varphi} Y^2 + 4\varepsilon e^{-\varphi} (\partial \bar{\partial} Y)^2 - 4G\varepsilon e^{-\varphi} \partial Y \bar{\partial} Y \partial \bar{\partial} \varphi \right]$$

Conserved and traceless (!) energy-momentum tensor

$$-4b_0^2 T_{ab}^{(\text{reg})} = \partial_a Y \partial_b Y - \frac{1}{2} g_{ab} \partial^c Y \partial_c Y - \frac{M^2}{2} g_{ab} Y^2 - \varepsilon \partial_a Y \partial_b \Delta Y$$

$$-\varepsilon \partial_a \Delta Y \partial_b Y + \varepsilon g_{ab} \partial^c Y \partial_c \Delta Y + \frac{\varepsilon}{2} g_{ab} (\Delta Y)^2 - G \varepsilon \partial_a Y \partial_b Y \Delta \varphi$$

$$+ G \frac{\varepsilon}{2} \partial_a \varphi \partial_b (\partial^c Y \partial_c Y) + G \frac{\varepsilon}{2} \partial_a (\partial^c Y \partial_c Y) \partial_b \varphi - G \frac{\varepsilon}{2} g_{ab} \partial^c \varphi \partial_c (\partial^d Y \partial_d Y)$$

$$- G \varepsilon (\partial_a \partial_b - g_{ab} \partial^c \partial_c) (\partial^c Y \partial_c Y).$$

⇒ conformal invariance expected to be maintained quantumly

$$-4b_0^2 T_{zz}^{(\text{reg})} = \partial Y \partial Y - 2\varepsilon \partial Y \partial \Delta Y - G\varepsilon \partial Y \partial Y \Delta \varphi + 4G\varepsilon \partial \varphi \partial (e^{-\varphi} \partial Y \overline{\partial} Y) -4G\varepsilon \partial^2 (e^{-\varphi} \partial Y \overline{\partial} Y)$$

One-loop propagator

One-loop renormalization of b^2 where $A(\varepsilon M^2) \sim \varepsilon M^2 = \text{tadpole d})$ $\frac{1}{b^2} = \frac{1}{b_0^2} - \left(\frac{1}{6} - 4 + A + 2G\int dk^2 \frac{\varepsilon}{(1+\varepsilon k^2)} - \frac{1}{2}GA\right) + \mathcal{O}(b_0^2)$

One-loop renormalization of T_{zz}

or, multiplying by b^2 ,

$$\frac{q^2}{b^2} = \left(\frac{q}{b^2}\right)^2 \times b^2 = \frac{1}{b_0^2} - \frac{1}{6} - G + \mathcal{O}(b_0^2)$$

This precisely confirms the above shift of the central charge by 6G obtained by conformal field theory technique of DDK

$$-\frac{6}{b_0^2} + \frac{6q^2}{b^2} + 1 + \frac{6G}{b^2} + \mathcal{O}(b_0^2) = 0$$

Conclusion

- Classical (perturbative) ground state is stable only for d < 2. For 2 < d < 26 the mean-field ground state is stable instead
- Lilliputian strings for d > 2 versus Gulliver's strings for $d \le 2$
- Higher-derivative terms in the beyond Liouville action for φ revive, telling the Nambu-Goto and Polyakov strings apart
- 2D conformal invariance is maintained by fluctuations in spite of ε but the central charge of φ gets additional 6G at one loop
- All that is specific to the theory with diffeomorphism invariance

Conclusion

- Classical (perturbative) ground state is stable only for d < 2. For 2 < d < 26 the mean-field ground state is stable instead
- Lilliputian strings for d > 2 versus Gulliver's strings for $d \le 2$
- Higher-derivative terms in the beyond Liouville action for φ revive, telling the Nambu-Goto and Polyakov strings apart
- 2D conformal invariance is maintained by fluctuations in spite of ε but the central charge of φ gets additional 6G at one loop
- All that is specific to the theory with diffeomorphism invariance

Final remark:

Large-d strings = bubble diagrams like O(N) sigma model but Large-d gravity = planar diagrams like Yang-Mills Strominger (1981)