
What Quantum Strings can tell us

about Quantum Gravity

Yuri Makeenko (ITEP)

Based on:

• Y. M. arXiv:2204.10205 [hep-th]

• J. Ambjørn, Y. M. MPLA 36, 2150136 (2021) [arXiv:2103.10259]

• Y. M. Nucl. Phys. B 967, 115398 (2021) [arXiv:2102.04753]

• Y. M. JHEP 07, 104 (2018) [arXiv:1802.07541]

• J. Ambjørn, Y. M. IJMPA 32, 1750187 (2017) [arXiv:1709.00995]

• J. Ambjørn, Y. M. Phys. Lett. B 770, 352 (2017) [arXiv:1703.05382]

• J. Ambjørn, Y. M. Phys. Lett. B 756, 142 (2016) [arXiv:1601.00540]

• J. Ambjørn, Y. M. Phys. Rev. D 93, 066007 (2016) [arXiv:1510.03390]



Two no-go theorems for string existence
———————————–

inherited from 1980’s

• Non-perturbative lattice regularization (by dynamical triangulation)
scales to a continuum string for d ≤ 1 but does not for d > 1
(same for hypercubic latticization of Nambu-Goto string in d > 2)

Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)

• Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989)

string susceptibility index of (closed) Polyakov’s string is not real
for 1 < d < 25

γstr = (1− h)
d− 25−

√
(d− 1)(d− 25)

12
+ 2 genus h



Two no-go theorems for string existence
———————————–

inherited from 1980’s

• Non-perturbative lattice regularization (by dynamical triangulation)
scales to a continuum string for d ≤ 1 but does not for d > 1
(same for hypercubic latticization of Nambu-Goto string in d > 2)
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The presented solutions rely on subtleties in Quantum Field Theory
enjoying diffeomorphism invariance: Strings(!) and Gravity(?) =⇒

1) Continuum limit is not as in Quantum Field Theory: Lilliputian
2) The Nambu-Goto and Polyakov strings differ quantumly:

higher derivative terms ∼ Λ−2 in emergent action revive



2. Mean-field ground state

of bosonic string



Nambu-Goto versus Polyakov strings
———————————–

Polyakov string is quadratic in Xµ (independent metric tensor ρab)

S =
K0

2

∫
d2ω
√
ρρab∂aX · ∂bX

Nambu-Goto string (plus Lagrange multiplier λab )

K0

∫
d2ω

√
det ∂aX · ∂bX = K0

∫
d2ω
√
ρ+

K0

2

∫
d2ω λab (∂aX · ∂bX − ρab)

World-sheet parameters ω1, ω2 ∈ ωL × ωβ rectangle

Closed bosonic string winding once around compactified dimension of
length β, propagating (Euclidean) time L (cylinder or torus).
No tachyon if β is large enough

Usual classical ground state

Xµ = X
µ
cl, [ρab]cl = ∂aXcl · ∂bXcl, λabcl = ρabcl

√
ρcl

λabcl = δab in conformal gauge for ωL = L, ωβ = β

The two string formulations are equivalent classically and at one loop



Induced (or emergent) action
———————————–

Gaussian path integral over Xµ
q by splitting Xµ = X

µ
cl +X

µ
q :

Sind = K0

∫
d2ω
√
ρ+

K0

2

∫
d2ω λab (∂aXcl · ∂bXcl − ρab)

+
d

2
tr logO, O = −

1
√
ρ
∂aλ

ab∂b.

Operator O reproduces the Laplacian ∆ for λab = ρab
√

det ρ

Additional ghost determinant in the conformal gauge ρab = ρδab

−
1

2
tr log

(
−∆b

a +
1

2
(∆b

a log ρ)
)

Induced (or emergent) action coincides with effective action for smooth

fields

2D determinants diverge and has to be regularized



Regularization of determinants
———————————–
Proper-time regularization of the trace

tr logO|reg = −
∫ ∞
a2

dτ

τ
tr e−τO, Λ2 =

1

4πa2

Pauli-Villars regularization of the trace Ambjørn, Y.M. (2017)

det(O)|reg ≡
det(O) det(O+ 2M2)

det(O+M2)2

tr logO|reg = −
∫ ∞

0

dτ

τ
tr e−τO

(
1− e−τM

2
)2
, Λ2 =

M2

2π
log 2.

is convergent as finite regulator mass M and divergent as M →∞.

For Pauli-Villars regularization beautiful diagrammatic technique and
det’s can be exactly computed for certain metrics by the Gel’fand-
Yaglom technique to compare with the Seeley expansion〈

ω| e−τO|ω
〉

=
1

4πτ

1√
detλab

+
R

24π
+O(τ)

which starts with the term 1/τ in 2 dimensions. For τ ∼ 1/Λ2 higher
terms are suppressed as R/Λ2 only for smooth fields but revive if not



Mean-field ground state
———————————– Ambjørn, Y.M. (2017)

For diagonal and constant λab = λ̄δab and ρab = ρ̄δab

Seff =
K0

2
λ̄

L2

ω2
L

+
β2

ω2
β

ωLωβ +K0(1− λ̄)ρ̄ ωLωβ

−
(
d

2λ̄
− 1

)
Λ2ρ̄ ωLωβ −

π(d− 2)

6

ωL
ωβ

Boundary terms omitted for L� β.
The minimum is reached at (quantum ground state)

λ̄ =
1

2

1 +
Λ2

K0
+

√√√√(1 +
Λ2

K0

)2

−
2dΛ2

K0


ρ̄ ∝

λ̄√
(1 + Λ2

K0
)2 − 2dΛ2

K0

ωβ =
ωL
L

√
β2 −

π(d− 2)

3K0λ̄

Smf = K0λ̄L

√
β2 −

π(d− 2)

3K0λ̄
(Alvarez-Arvis)



Mean-field ground state (cont.)
———————————–

The approximation describes a mean field which takes into account
an infinite set of pertubative diagrams about the classical vacuum.
Then λab and ρab do not fluctuate which becomes exact at large d.

It is like 2d O(N) sigma-model at large N where the Lagrange multi-
plier does not fluctuate (summing the bubble graphs). The large-N
vacuum is very closed to the physical vacuum even for N = 3.

The minimization over ωβ/ωL is also needed at the saddle point.

The square root is well-defined for d ≥ 2 if

K0 > K∗ =
(
d− 1 +

√
d2 − 2d

)
Λ2 d→∞→ 2dΛ2

Perturbation theory is recovered by expanding in 1/K0 ∼ ~. Then λ̄

ranges between 1 (classical) and (quantum) value

λ̄∗ =
1

2

(
d−

√
d2 − 2d

)
d→∞→

1

2



3. Two scaling regimes:

Gulliver’s vs. Lilliputian



Lattice-like scaling limit (Gulliver’s)
———————————–

The ground state energy (Alvarez-Arvis)

E0(β) = K0λ̄

√
β2 −

π(d− 2)

3K0λ̄

does not scale because K0 > K∗ ∼ Λ2 for λ̄ to be real (> λ̄∗). Let

β2 > β2
min =

π(d− 2)

3K∗λ̄∗
, λ̄∗ =

1

2

(
d−

√
d2 − 2d

)
d→∞→

1

2

for not to have a tachyon. For the smallest possible value β = βmin

E0(β) ∝
K0λ̄

Λ

√
λ̄− λ̄∗

scales to m if

λ̄− λ̄∗ ∝
m2

Λ2
, K0 −K∗ ∝

m4

Λ2

The scaling does not exist for excited states (larger values of β) and

thus is particle-like similar to lattice regularizations of a string, where

only the lowest mass scales to finite, excitations scale to infinity

Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)
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EN(β) = K0λ̄

√√√√β2 +
1

K0λ̄

(
−
π(d− 2)

3
+ 8N

)
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min =
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1

2
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√
d2 − 2d

)
d→∞→

1

2
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Lilliputian string-like scaling limit
———————————–
Let us “renormalize” the units of length

LR =

√
λ̄

λ̄− λ̄∗
L, βR =

√
λ̄

λ̄− λ̄∗
β

to obtain finite effective action

Smf = KR LR

√√√√β2
R −

π(d− 2)

3KR
, KR = K0(λ̄− λ̄∗)

The renormalized string tension KR scales to finite

K0 → K∗+
K2
R

2Λ2
√
d2 − 2d

, K∗ =
(
d− 1 +

√
d2 − 2d

)
Λ2 d→∞→ 2dΛ2

reproducing the Alvarez-Arvis spectrum of continuum string

The average area is also finite

〈Area〉 = LR

(
β2
R −

π(d−2)
6KR

)
√
β2
R −

π(d−2)
3KR

⇒ minimal area for large βR and diverges if β2
R → π(d− 2)/3KR



The Lilliputian world
———————————–
Like for the zeta-function regularization except for nonlinearities, but

length =

√
λ̄− λ̄∗
λ̄

lengthR ∝
√
KR
Λ

lengthR

in target space which is of order of the cutoff (⇒ Lilliputian)

Nevertheless, the cutoff (in parameter space) ∆ω = 1/(Λ 4
√
g) fixes

maximal number of modes in the mode expansion to be

nmax ∼ Λ 4
√
gωβ

Classically 4
√
gωβ = β reproducing Brink-Nielsen (1973) but

Quantumly 4
√
gωβ ∝

β√
λ̄− λ̄∗

=

√
K0 β√
KR

is much larger

• Continuum because infinitely smaller distances can be probed
(classical music can be played on the Lilliputian strings)

• Gulliver’s tools are too coarse to resolve the Lilliputian world
(this is why lattice string regularizations of 1980’s never reproduce
canonical quantization)





4. Instability of classical ground state



Semiclassical energy
———————————– Brink, Nielsen (1973)

Semiclassical (or one-loop) correction due to zero-point fluctuations

S1l =

[
K0 −

(d− 2)

2
Λ2
]
Lβ −

π(d− 2)L

6β

bulk term Casimir energy

To make it finite, it is introduced the renormalized string tension

KR = K0 −
(d− 2)

2
Λ2

which is kept finite as Λ → ∞. Then it is assumed it works order by
order of the perturbative expansion about the classical ground state,
so KR can be made finite by fine tuning K0.

We see however from the mean-field formula

Smf = K0λ̄L

√
β2 −

π(d− 2)

3K0λ̄

that Smf never vanishes with changing K0 (except for β = βmin).
Thus the one-loop correction simply lowers for d > 2 the energy of
the classical ground state which may indicate its instability.



Effective potential
———————————–

To check stability of the ground state, add the source term like in

QFT

Ssrc =
K0

2

∫
d2ω jabρab

defining the field

ρab(j) = −
2

K0

δ

δjab
logZ.

Minimizing for constant jab = jδab we find Ambjørn, Y.M. (2017)

λ̄(j) =
1

2

(
1 + j +

Λ2

K0

)
+

√√√√1

4

(
1 + j +

Λ2

K0

)2

−
dΛ2

2K0

ρ̄(j) =
λ̄(j)√(

1 + j + Λ2

K0

)2
− 2dΛ2

K0

λ̄(ρ̄) =

√√√√ dΛ2

2K0

√
ρ̄

ρ̄− 1

in the mean field approximation for ωL = L and ωβ = β � 1
√
K0,



Effective potential (cont.)
———————————–
“Effective potential” is given by the Legendre transformation

Γ(ρ̄) = −
1

K0Lβ
logZ − j(ρ̄)ρ̄

In the mean-field approximation

Γ(ρ̄) =

(
1 +

Λ2

K0

)
ρ̄−

√√√√2dΛ2

K0
ρ̄(ρ̄− 1) 1.2 1.4 1.6 1.8 2.0

0.90

0.92

0.94

0.96

0.98

1.00

Classical vacuum ρ̄ = 1 is unstable and stable minimum occurs at

ρ̄(0) = ρ̄m.f. if K0 > K∗ (same value as before)

Near the minimum (global stability)

Γ(ρ̄) =

(1 +
Λ2

K0

)2

−
2dΛ2

K0

1/2

+
K0

2dΛ2

(1 +
Λ2

K0

)2

−
2dΛ2

K0

3/2

[ρ̄− ρ̄(0)]2

Nonlinearity =⇒ string susceptibility γstr = 1/2 for cylinder and torus

is quite different from γstr = 1 of KPZ-DDK



5. Fluctuations about mean field



Coleman-Weinberg potential
———————————–
Integrating out Xµ

q we get (a part of) the effective action

d

2
tr ln

[
−

1

ρ
∂aλ

ab∂b

]
reg

=
∑
n

1

n ��
��· ··
·· · ··

·

wavy lines correspond to fluctuations δλab or δρ about ground state

λab(ω) = λ̄δab + δλab, ρ(ω) = ρ̄+ δρ

Same stability of wavy quadratic fluctuations about the mean field as
about the classical ground state because of background independence.
Positive definite quadratic form for imaginary δλab and real δρ

Polyakov’s book: typical δλ ∼ 1/Λ so λab is localized and decouples.
Thus only ρ fluctuates (stable fluctuations for 2 < d < 26)

S(2) =
1

16πb20

∫ [
(∂aϕ)2 + 2µ2

0 eϕ
]
, b20 =

6

26− d

The private life occurs at distances ∼ Λ−1 but is observable Y.M. (2021)



Path integrating over λab

———————————–

Simplified quadratic action (λzz̄ = 0)

S(2) =
∫ [

1

4πb20
∂ϕ∂̄ϕ+ ν

(
λzz∇∂ϕ+ λz̄z̄∇̄∂̄ϕ

)
− dΛ2ρ̄ eϕλzzλz̄z̄

]

Integrating out λzz and λz̄z̄

S(2) =
∫ [

1

4πb20
∂ϕ∂̄ϕ+

ν2

dΛ2ρ̄
e−ϕ(∇∂ϕ)(∇̄∂̄ϕ)

]

Integrating by parts (only these two terms are independent)

S(2) =
1

4πb20

∫ {
∂ϕ∂̄ϕ+ 4ε e−ϕ

[
(∂∂̄ϕ)2 + ∂ϕ∂̄ϕ∂∂̄ϕ

]}
, ε =

πν2b20
dΛ2ρ̄

modulo boundary terms

The first additional term appears for Polyakov’s string from the Seeley

expansion of the heat kernel but the second does not



Higher-derivative action
———————————–

Integrating over Xµ, ghosts, regulators Y µ, Ȳ µ, Zµ and λab

S =
1

16πb20

∫ √
g

[
−R

1

∆
R+ 2m2

0 + a2R

(
R+Ggab ∂a

1

∆
R ∂b

1

∆
R

)]
curvature squared R2 (Polyakov) + nonlocal G 6= 0 (Nambu-Goto)

or the beyond Liouville action

S =
1

4πb20

∫
[∂ϕ∂̄ϕ+

µ2
0

2
eϕ + 4ε e−ϕ(∂∂̄ϕ)2 − 4Gε e−ϕ∂ϕ∂̄ϕ∂∂̄ϕ]

in conformal gauge ρab = δabρ̄ eϕ with worldsheet cutoff ε = a2/ρ̄ and

µ2
0 = m2

0ρ̄

Classically higher-derivative terms vanish for smooth εR� 1 while

quartic derivative provides UV cutoff but also interaction with

coupling ε ⇒ uncertainties ε× ε−1 so they revive quantumly

⇒ produce anomalies (yet higher terms do not change – universality)

Smallness of ε is compensated by change of the metric (shift of ϕ)



6. CFT á la KPZ-DDK



Review of KPZ-DDK
———————————–Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989)

Liouville action in fiducial (or background) metric ĝab

SL =
1

8πb2

∫ √
ĝ

(
1

2
ĝab∂aϕ∂bϕ+ qR̂ϕ

)
+ µ2

∫ √
ĝ eαϕ

b2 = b20 +O(b40), q = 1 +O(b20), α = 1 +O(b20), b20 =
6

26− d
are “renormalized” parameters of the effective action.
Energy-momentum pseudotensor

Tzz = matter + ghosts−
1

4b2

(
∂zϕ∂zϕ− 2q∂2

zϕ
)

Background independence: the total central charge

d− 26 + 1 + 6
q2

b2
= 0

and the conformal weight

weight ( eαϕ) = qα− b2α2 = 1

=⇒ αb =

√
25− d

24
−
√

1− d
24

, q = α−1 + b2α



Energy-momentum tensor
———————————–
For minimal coupling to gravity Gibbons, Pope, Solodukhin (2019) at G=0

−4b20T
(min)
ab = ∂aϕ∂bϕ−

1

2
gab∂

cϕ∂cϕ− µ2
0gab − ε∂aϕ∂b∆ϕ− ε∂a∆ϕ∂bϕ

+εgab∂
cϕ∂c∆ϕ+

ε

2
gab(∆ϕ)2 −Gε∂aϕ∂bϕ∆ϕ+G

ε

2
∂aϕ∂b(∂

cϕ∂cϕ)

+G
ε

2
∂a(∂cϕ∂cϕ)∂bϕ−G

ε

2
gab∂

cϕ∂c(∂
dϕ∂dϕ)

For diffeomorphism invariant action

−4b20Tab = −4b20T
(min)
ab − 2(∂a∂b − gab∂c∂c)(ϕ− ε∆ϕ+G

ε

2
gab∂aϕ∂bϕ)

+2Gε(∂a∂b − gab∂c∂c)
1

∆
∂d(∂dϕ∆ϕ)

It is conserved and traceless (!) thanks to diffeomorphism invariance

Tzz component (in two dimensions) Kawai, Nakayama (1993) at G=0

4b20Tzz = (∂ϕ)2 − 2ε∂ϕ∂∆ϕ− 2∂2(ϕ− ε∆ϕ)−Gε(∂ϕ)2∆ϕ

+4Gε∂ϕ∂( e−ϕ∂ϕ∂̄ϕ)− 4Gε∂2( e−ϕ∂ϕ∂̄ϕ) +Gε∂(∂ϕ∆ϕ)

+Gε
1

∂̄
∂2(∂̄ϕ∆ϕ)



DDK for the beyond Liouville action
———————————–

One-loop operator products Tzz(z) eαϕ(0) and Tzz(z)Tzz(0)

e)

k)

a)

g) h)

d)

f)

j)i)

c)b)

Diagrams a) to j) contribute qα, diagrams k) contributes −b2α2

to the conformal weight of eαϕ(0): 1 = qα− b2α as before



One-loop central charge
———————————–

Diagrams a) to j) contribute 6q2/b2 to the central charge as usual.

Diagram k) contributes usual 1 to the central charge but

the nonlocal term in Tzz revives

2 ·
1

16

〈
2Gε∂31

∂̄
∂̄ϕ(z)∂̄ϕ(z)

[
∂ϕ(0)∂ϕ(0)− 8ε∂ϕ(0)∂2∂̄ϕ(0)

]〉
→ −

Gπ

2
∂31

∂̄
δ(2)(z) = 3G

1

z4

modulo subtleties with conformal Ward identities for G 6= 0

The second DDK equation is modified (assuming one loop is exact)

−
6

b20
+

6q2

b2
+ 1 + 6Gq = 0 ⇒ αb =

√
25− d− 6Gq

24
−
√

1− d+ 6Gq

24

Tremendous cancellations occur thanks to diffeomorphism invariance



7. Algebraic check of DDK

Salieri:

“I checked the harmony with algebra.

Then finally proficient in the science,

I risked the rare delights of creativity.”

A. Pushkin, Mozart and Salieri



Pauli-Villars’ regularization
———————————–

Pauli-Villars’ regulators: Grassmann Y , Ȳ (M2) and normal Z (2M2)

Sreg. =
1

16πb20

∫ √
g
[
gab∂aY ∂bY +M2Y 2 + ε(∆Y )2 +Gεgab∂aY ∂bY R

]
or in conformal gauge

Sreg. =
1

4πb20

∫ [
∂Y ∂̄Y +

M2

4
eϕY 2 + 4ε e−ϕ(∂∂̄Y )2 − 4Gε e−ϕ∂Y ∂̄Y ∂∂̄ϕ

]
Conserved and traceless (!) energy-momentum tensor

−4b20T
(reg)
ab = ∂aY ∂bY −

1

2
gab∂

cY ∂cY −
M2

2
gabY

2 − ε∂aY ∂b∆Y

−ε∂a∆Y ∂bY + εgab∂
cY ∂c∆Y +

ε

2
gab(∆Y )2 −Gε∂aY ∂bY∆ϕ

+G
ε

2
∂aϕ∂b(∂

cY ∂cY ) +G
ε

2
∂a(∂cY ∂cY )∂bϕ−G

ε

2
gab∂

cϕ∂c(∂
dY ∂dY )

−Gε(∂a∂b − gab∂c∂c)(∂cY ∂cY ).

⇒ conformal invariance expected to be maintained quantumly

−4b20T
(reg)
zz = ∂Y ∂Y − 2ε∂Y ∂∆Y −Gε∂Y ∂Y∆ϕ+ 4Gε∂ϕ∂( e−ϕ∂Y ∂̄Y )

−4Gε∂2( e−ϕ∂Y ∂̄Y )



One-loop propagator
———————————–

c)a) d)b)

b) = −
1

4

∫ d2k

(2π)2

{
ε2k2(k − p)2

(1 + εk2)[1 + ε(k − p)2]

−2
(εk2(k − p)2 −M2)2

(k2 +M2 + εk4)[(k − p)2 +M2 + ε(k − p)4]

+
(εk2(k − p)2 − 2M2)2

(k2 + 2M2 + εk4)[(k − p)2 + 2M2 + ε(k − p)4]
}|ϕ(p)|2

→ b)|reg div −
p2

96π
|ϕ(p)|2

One-loop renormalization of b2 where A(εM2) ∼ εM2 = tadpole d)

1

b2
=

1

b20
−
(

1

6
− 4 +A+ 2G

∫
dk2 ε

(1 + εk2)
−

1

2
GA

)
+O(b20)



One-loop renormalization of Tzz
———————————–
One-loop renormalization of T (1)

zz

a) d)c)b)

q

b2
=

1

b20
−

1

6
+ 2−

1

2
A−

1

2
G−G

∫
dk2 ε

(1 + εk2)
+

1

4
GA

or, multiplying by b2,

q2

b2
=
(
q

b2

)2
× b2 =

1

b20
−

1

6
−G+O(b20)

This precisely confirms the above shift of the central charge by 6G
obtained by conformal field theory technique of DDK

−
6

b20
+

6q2

b2
+ 1 + 6G+O(b20) = 0



Conclusion
———————————–

• Classical (perturbative) ground state is stable only for d < 2.

For 2 < d < 26 the mean-field ground state is stable instead

• Lilliputian strings for d > 2 versus Gulliver’s strings for d ≤ 2

• Higher-derivative terms in the beyond Liouville action for ϕ revive,

telling the Nambu-Goto and Polyakov strings apart

• 2D conformal invariance is maintained by fluctuations in spite of ε

but the central charge of ϕ gets additional 6G at one loop

• All that is specific to the theory with diffeomorphism invariance
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For 2 < d < 26 the mean-field ground state is stable instead

• Lilliputian strings for d > 2 versus Gulliver’s strings for d ≤ 2

• Higher-derivative terms in the beyond Liouville action for ϕ revive,

telling the Nambu-Goto and Polyakov strings apart

• 2D conformal invariance is maintained by fluctuations in spite of ε

but the central charge of ϕ gets additional 6G at one loop

• All that is specific to the theory with diffeomorphism invariance

Final remark:

Large-d strings = bubble diagrams like O(N) sigma model but

Large-d gravity = planar diagrams like Yang-Mills Strominger (1981)


