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In this talk

1. Casimir-Polder potential.

2. Lifshitz theory: gauge-invariant formalism.

3. Solution of diffraction grating problem. Casimir energy

in the system of two gratings. Scattering method.

. Lateral Casimir force experiment in the system of two
diffraction gratings.

. Casimir-Polder potential experiment in the system atom
- diffraction grating.

. Torque in the system of two rotated infinite gratings.
Energy discontinuity (1D - 2D geometric transition).

. Giant torque in the system of two rotated finite gratings.



Casimir-Polder potential

Consider propagation of an electromagnetic field from a dipole source
at the point ' = (0,0, L) characterized by electric dipole moment
d. In this case, components of the four-current density of the dipole
source must be written in the form [V.N.Marachevsky and Yu.M.Pis’-
mak, Phys.Rev.D 81, 065005 (2010)]:

p(t,r) = —d*(£)ak>(r —v'), (1)
J5(t, 1) = 0:d*(£)83(r — ¥') . (2)

One can evaluate atomic polarizability:
aj(t — t2) = i{T(dj(tr), dj(t2))) , (3)

where d;(t) in (3) are operators of electric dipole moment.



Casimir-Polder potential

/d3rJ ) AR( /dt d(t (4)

with operators d¥(t) in the four-current density (1), (2). The Casimir-
Polder potential is derived from (4) in the second order perturbation
theory:

We obtain

(L) = —/Z:a'f'(/‘w)of(/w ¢ ), (5)
0
where
DU(t_ tlvrvr/) = i<T(Ei(t>r)Ej(t/7r,))>’ (6)

Df(t—t'r¥)=Dy(t -t ryr)— D,S.O)(t— thrr).  (7)



Casimir energy

The Casimir energy of two perfectly conducting parallel plates separated

by a distance a :
Sn?

E= 220" (8)

S is the plate area [H.B.G. Casimir, On the attraction between
two perfectly conducting plates, Proc. Kon. Ned. Akad. Wet. B 51,
793-795 (1948)] .



Lifshitz theory for two half-spaces

Consider two dielectric half-spaces z < 0, z > a and the vacuum slit
0 < z < a between them.

Pressure P is equal to T,, component of the energy-momentum
tensor, it is expressed in terms of electric and magnetic Green functions
of fluctuating electromagnetic field:

i [T dw
P=T.(20) = _E/ P [Dg((ZO,zo) + DyEy(ZO,Zo) — DE (29, 20)+
—00

Df(20, 20) + D)} (20, 20) — D1.(z0, Zo)]



It is convenient to derive local components of electric Green functions
fora given k, =  /w? — k2 — k}% in a local basis e,, ey, e,. Cartesian

components of electric Green functions can be expressed in terms of
local components as follows:

’ 1y d%k
DE (w,r,¥) = /(D,’:;(w, k;) cos® 6 + Dly(w, k;) sin? 0) ™! (rrrH)T)Hz 7
i
(e ey A2k
Df;,(w,r,r’):/(Dr’:;(w,kr)sin20+D(fg(w,k,)cosze)e’kl('l qpﬁ?

DE (w,r,¥) = / DE (w, k)™ 171 o3



Local components of electric Green functions:

E ikz ik ik (2a— ik
Dy (w, k) = A [e’ Z(rrmirrvze’ (2a=20) _ rrppel o)+
™
e”'kzz(rTM1rTMQeikZ(2"+Z°) - rrmleikz(z"’*z()))} ;
2
DE w kr Iw IkZZ rrel rTEzeikz(2afzo) + rTE2eikzzo +
09\
2k, ATE AN TE
'kzz(rTEl rrepeie(2at20) 4 rTE1€'kZ(2a_Z°))} )
E ik; K e (2 ik
Dzz(wa kr) = A [e’ Zz(rTerTMZeI z(2a—20) + rTMZGI ZZO)+
2k AT
’kzz(rTerTM2eikz(2a+z°) + rTM1eik’(2afz°))} )

where Aty =1 — rrvirrvee?™ @, Are =1 — rrerrreae?*=2 with
Fresnel coefficients rrv1, rrve, rTe1, rTE2.
[V.N.Marachevsky and A.A.Sidelnikov, Universe 7, 195 (2021).]



Magnetic Green function can be evaluated from electric Green function
as follows:

D,-',"(w, x,x') = 2

Local components of magnetic Green functions:

H ikz T ik ikz(2a— ik
Drr(w’ kr) = - [e’ ZZ(rTE]_rTEzeI z(2a—2) _ rrese’ ZZO)—I—
e_ikzz(rTE1rT526ikZ(2a+z°) — rTEleikZ(za_zo))} ;
iw? . .
Djo(w, kr) = [elkzz(fTleTMze’kz(za*z(’) + rrvpe™ )+
2k; D
e_’kzz(rT/\/ll rrmpe™e22420) 4y e'kz(2a_z°))} )
2
K2 T (2 .
DH(w, k) = . [elkzz(fTElfTEze'kZ(2a ) | rrppee®) 4
2k ATE
e*’kzz(rTEl rrepeie(2at20) 4 pr e'kz(zafzo))} )



Lifshitz pressure between two dielectric half-spaces separated by a
distance a at zero temperature [E.M.Lifshitz, The theory of molecular
attractive forces between solids, Zh. Eksp. Teor. Fiz. 29, 94-110
(1955)]:

1 o0 o0
P=—5a] dw/o ks exp(—2y/w? + k2a) /w2 + K2

rrma(iow, ke)rrve(iw, kr) n rre1(iw, ke)rrea(iw, kr) 9)
ATM(iw, k,) ATE(iw, k,) )

Lifshitz energy on a unit surface:
dwdk, dk
/// I 1 ATM(iw, k,)ATE(iw,k,)}, (10)

here Arn =1 — rrmirrvee® s, Are =1 — rreirrese

ke = (/K2 + K2, ky = \/w? — K.

2ikza



The ground state energy of the bosonic system:
wj
E= — 11
Z/: 2 (11)

the sum is over all eigenfrequencies of the system.
To evaluate (11) the argument principle can be used:

2m%q§w)lnf dw—quwo Zqﬁwoo, (12)
where
P(w) = w/2

and
f(w) = det(/ — Rayp(w)Ridown(w)). (13)



Scattering approach: flat boundaries
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Scattering approach: curved boundaries
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Diffraction grating
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O.M. Rayleigh, On the dynamical theory of gratings, Proc. Roy. Soc.
A 79, 399-415 (1907).




Rayleigh decomposition for 1D gratings.

Rayleigh expansion for an incident electromagnetic wave on a single
grating

400

E(x,2) = //Se) exp(iapx — iﬁ;()l)z) + Z Rﬁf}) exp(iapx + iﬁgl)Z)?
400

Hy(x,2) = I,Sh) exp(iapx — iﬁ;(nl)z) + Z Rﬁﬁ) exp(ia,x + ,'5,(,1)2)_

Here ap = ky« + 27p/d and B,(,l)z =w? - k)% — a3
The reflection matrix is constructed as follows:

e e e h
- (=0 s -6
RN = o =0)  RULOSD = 0.4 = )

Rayleigh expansion is exact outside gratings. The unknown coefficients
can be determined from the exact solution of Maxwell equations.



Two diffraction gratings




Reflection from the lower grating constituting Ry down
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Reflection from the upper grating constituting Rpp
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Reflection from the upper grating constituting Rpp
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Casimir energy of two gratings

1 400 400 1
E= (27r)3/0 dw/_oo dky/_ dic Indet (1 = RaupRidoun )

jus
d

Roup(iw, kx, ky) = Q*K(iw)Radown(iw, kx, —ky)K(iw)Q,  (14)
yv_ (G O

K(iw) = (O Gl) ; (15)
27

with matrix elements e_LVw2+k3+(kX+Tp)2,p = —N...N on the

main diagonal of a matrix Gi,

(5 2)

with matrix elements e27™s/d p — —N ... N on the main diagonal

of a matrix Gp. [A.Lambrecht and V.N.Marachevsky, Phys.Rev.Lett.
101, 160403 (2008); Int. J. Mod. Phys. A 24, 1789-1795 (2009). |].



Reflection R2down .
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Change of coordinates z = —zy + L, y = —y1 in the solution.
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Lateral change of coordinates x = x1 — s in the solution. Reflection

from the upper grating constituting Royp.
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Lateral Casimir force experiment
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H.-C.Chiu, G.L.Klimchitskaya, V.N.Marachevsky, V.M.Mostepanenko
and U.Mohideen, Phys.Rev.B 80, 121402(R) (2009); Phys.Rev.B 81,
115417 (2010).



Lateral Casimir force experiment

Consider gold sinusoidal corrugations with amplitudes A1= 85.4 nm,
A2=13.7 nm, diameter of the sphere 2R=194.8 micrometers.

4 L minimum distance = 25 6 nm

Lateral force (Newtons)
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first harmonic
two harmonics
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Lateral Casimir force experiment
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Lateral Casimir force experiment
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Maximum values of the measured lateral Casimir force are shown as
crosses. Solid and dashed lines are predictions of the exact theory
and the Proximity Force Approximation based on Lifshitz theory for
two dielectric half-spaces.



Normal Casimir force experiments with gratings
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Normal Casimir force experiments with gratings
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Casimir-Polder potential atom - grating experiment
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Casimir-Polder potential atom - grating experiment

Boss-Einstein condensate
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Casimir-Polder potential atom - grating experiment
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Casimir-Polder potential atom - grating experiment
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Casimir-Polder potential atom - grating experiment




Casimir-Polder potential atom - grating experiment
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Torque in the Casimir effect
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Torque in the Casimir effect
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Torque in the Casimir effect
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Rotated gratings

Consider the system of two Au rectangular gratings with parameters
d = 400 nm, f = 0.5, h = 200 nm, a = 100 nm; the angle of
rotation is 6.

[m]

=



Rotated gratings. Reciprocal lattice space.

The vectors which are coupled by diffraction can be written as k,,,, =
k+ 2F’T(nex+ me,) , where the vector k belongs to the first Brillouin
zone.



Reflections from the lower grating constituting Rygown-

Reciprocal lattice vectors with m = —1 are highlighted green.




Reflections from the lower grating constituting Ry gown

Reciprocal lattice vectors with m = 0 are highlighted green.




Reflections from the lower grating constituting Ry gown

Reciprocal lattice vectors with m = 1 are highlighted green.




Reflections from the upper grating constituting Roup

Reciprocal lattice vectors with n = —1 are highlighted green.




Reflections from the upper grating constituting Roup

Reciprocal lattice vectors with n = 0 are highlighted green.




Reflections from the upper grating constituting Roup

Reciprocal lattice vectors with n = 1 are highlighted green.




Casimir energy of two gratings depends on Ry ypRidown
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Casimir energy and torque for two infinite rotated gratings

The Casimir energy of two infinite rotated gratings is defined by
Rayleigh reflection coefficients contained in matrices Ridown, Roup of
the order 2(2N + 1)%:

1 too
E(z.0) = —— d dk,dk
(2:6) (277)3/0 “/Bz v

In det(/ — Roup(itw, kx, ky) Ridown(itw; ks ky)). (17)

The Casimir torque:
_ 0E(z,0)



Torque for infinite rotated gratings. 1D-2D geometric transition.
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M.Antezza, H.B.Chan, B.Guizal, V.N.Marachevsky, R.Messina and
M.Wang, Giant Casimir torque between rotated gratings and the
6 = 0 anomaly, Phys.Rev.Lett. 124, 013903 (2020).



Energy discontinuity at rotation angle 6 =0

Consider wave vectors coupled by diffraction in reciprocal lattice
space in 1D system (strictly for § = 0):
2mn
kp=k+ ey, (19)
d
the first Brillouin zone is —7/d < k, < mw/d, while k, takes all real
values.
Consider wave vectors coupled by diffraction in reciprocal lattice
space in 2D system (for any finite 6):

2
knm =k + g(nex + me,) (20)

While for two aligned gratings the y component of the total wave
vector is strictly conserved in any scattering process, this conservation
law is lost even for a small non-vanishing value of the rotation angle
0, since (see Eq.(20)) changing the value of the diffraction order m
modifies the values of both x and y components of the wave vector.



Energy discontinuity at rotation angle 6 =0

The reason for the appearance of energy discontinuity at rotation
angle 6 = 0 is breaking of conservation of the k, component of the
wave vector in reciprocal lattice space due to rotation of the system
and, as a result, the fundamental change of the structure of reciprocal
lattice space.



Energy/surface (nJ/ m?)

Casimir energy for finite rotated gratings
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Torque/surface (nN/m)

Casimir torque for finite rotated gratings
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Conclusions

1. 1D-2D geometric transition (energy discontinuity at ro-
tation angle & = 0) is found in the system of two
infinite gratings with coinciding periods.

2. There is a conservation of k, momentum in 1d system

at rotation angle 6 = 0, breaking of k, momentum
conservation takes place in 2D system at any finite
rotation angle 6.
The reason for the appearance of energy discontinuity
at rotation angle § = 0 is breaking of conservation
of the k, component of the wave vector in reciprocal
lattice space due to rotation of the system and, as
a result, the fundamental change of the structure of
reciprocal lattice space.

3. Giant torque is found in the system of two finite rotated
gratings. Torque is growing without bounds when the
size of gratings increases.



Conclusions

4. The effect should be of strong interest due to a novel
mechanism of symmetry breaking in the Brillouin zone
which may be used to find analogous effects in various
physical systems with spatial periodicity.
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