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The inflation 1 was supposed to solve problems related with the hot
big-bang model2

1A.A. Starobinsky, Relict Gravitation Radiation Spectrum and Initial State of the
Universe (In Russian), JETP Lett. 30 (1979) 682 [Pisma Zh. Eksp. Teor. Fiz. 30
(1979) 719–723]

2R. Brout, F. Englert, E. Gunzig, The Creation of the Universe as a Quantum
Phenomenon, Annals Phys., 115, 78 (1978).
A. A. Starobinsky, “A New Type of Isotropic Cosmological Models Without
Singularity,” Phys. Lett. B 91, 99 (1980);
D. Kazanas, “Dynamics of the Universe and Spontaneous Symmetry Breaking,”
Astrophys. J., 241, L59 (1980);
K. Sato, “First-order phase transition of a vacuum and the expansion of the
Universe,” MNRAS, 195, 467 (1981);
A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and
Flatness Problems,” Phys. Rev. D 23, 347 (1981);
A. D. Linde, “ A New Inflationary Universe Scenario: A Possible Solution of the
Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,” Phys.
Lett. B 108, 389 (1982);
A. Albrecht, P. J. Steinhardt, “Cosmology for Grand Unified Theories with Radiatively
Induced Symmetry Breaking,” Phys. Rev. Lett. 48, 1220 (1982);
A. D. Linde, “Chaotic Inflation,” Phys. Lett. B 129, 177 (1983);
V. F. Mukhanov and G. V. Chibisov, “Quantum Fluctuation and Nonsingular Universe.
(In Russian),” JETP Lett. 33, 532 (1981) [Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)];
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The inflationary stage preceded the Big Bang stage

The inflationary stage is slow-roll on the quasi de Sitter solution,
|Ḣ| ≪ H2

Stability/unstability of de Sitter solutions
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Einstein-Gauss-Bonnet gravity

We consider the model with the Gauss-Bonnet term multiplied to a
function of the scalar field ϕ:

S =

∫
d4x

√
−g

2
[FR − gµν∂µϕ∂νϕ− 2V (ϕ)− ξ(ϕ)G] , (1)

where the functions V (ϕ), and ξ(ϕ) are differentiable ones, R is the
Ricci scalar, F is a constat and

G = RµνρσR
µνρσ − 4RµνR

µν + R2

is the Gauss-Bonnet term. We assume that F (ϕ) > 0 and V (ϕ) > 0
during inflation.
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In the spatially flat Friedmann-Lemâıtre-Robertson-Walker metric

ds2 = − dt2 + a2(t)
(
dx2 + dy2 + dz2

)
,

one obtains the following system of evolution equations 3:

6H2
(
F − 4Hξ,ϕϕ̇

)
= ϕ̇2 + 2V − 6HF,ϕϕ̇, (2)

2Ḣ
(
F − 4Hξ,ϕϕ̇

)
= − ϕ̇2 + 4H2

(
ξ̈ − Hξ,ϕϕ̇

)
− F̈ + HF,ϕϕ̇, (3)

ϕ̈+ 3Hϕ̇ = 3
(
Ḣ + 2H2

)
F,ϕ − V,ϕ − 12ξ,ϕH

2
(
Ḣ + H2

)
, (4)

where H = ȧ/a is the Hubble parameter, a(t) is the scale factor, dots
denote the derivatives with respect to the cosmic time t and
A,ϕ ≡ dA/dϕ for any function A(ϕ).

3C. van de Bruck and C. Longden, Phys. Rev. D 93, 063519
(2016)[arXiv:1512.04768].
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Effective potential

It is interesting to get the second order correction of inflationary
parameter in obtained model. The most convenient way for consideration
of inflationary parameter is application of effective potential approach.

To analyze stability of de Sitter solutions in the Gauss-Bonnet
gravity models with field non-minimally coupled with Ricci scalar 4

the effective potential was introduce. In the considering with model
constant coupling field with Ricci scalar the effective potential can
be presented in the form

Veff (ϕ) =
ξ(ϕ)

3
− F 2

4V (ϕ)
. (5)

4E. O. Pozdeeva, M. Sami, A. V. Toporensky and S. Y. Vernov, Phys. Rev. D 100
(2019) no.8, 083527, arXiv:1905.05085
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• Note that the effective potential Veff is not a unique function suitable
to describe the stability of de Sitter solutions. For example, we can
introduce the analog of effective potential

1 Ṽeff = −(Veff )
−1

2 analogically we have de Sitter solution if Ṽ ′
eff |ϕ=ϕ0 = 0,

3 if Ṽ ′′
eff |ϕ=ϕ0 > 0, the de Sitter solution is stable,

4 if Ṽ ′′
eff |ϕ=ϕ0 < 0 the de Sitter solution is unstable.

The conditions are coincide because Ṽ ′
eff =

V ′
eff

V 2
eff
,

Ṽ ′′
eff = Veff

′′

Veff
2 − 2(Veff

′)2

Veff
3

and in de Sitter solution we have:Ṽ ′′
eff = Veff

′′

Veff
2

In the case of Einstein gravity (U = 1, F = 0) the alternative
effective potential will coincide with potential V (ϕ).

7 / 34



In the slow-roll approximation, defined by the following conditions5:

ϕ̇2 ≪ V , |ϕ̈| ≪ 3H|ϕ̇|, 4|ξ̇|H ≪ F , |ξ̈| ≪ |ξ̇|H, |F̈ | ≪ H|Ḟ | ≪ H2F ,
(6)

Eqs. (2)–(4) are:

3FH2 ≃ V , (7)

2FḢ ≃ − ϕ̇2 − 4H3ξ,ϕϕ̇+ HF,ϕϕ̇, (8)

ϕ̇ ≃ − V,ϕ + 12ξ,ϕH
4 − 6H2F,ϕ

3H
. (9)

5C. van de Bruck and C. Longden, Phys. Rev. D 93, 063519 (2016)
[arXiv:1512.04768],
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The R2 inflationary predictions 6 in the leading approximation in
terms of inverse e-folding numbers 1/N for spectral index ns and
tensor-to-scalar ratio r :

ns ≃ 1− 2

N
, r ≃ 12

N2
(10)

are in the best agreement with Planck 2018 7 and BICEP/Keck
2021 data 8.

6A. A. Starobinsky, “Dynamics of phase transition in the new inflationary universe
scenario and generation of perturbations, Phys. Lett. B117 175 (1982).
A. Starobinsky, “The Perturbation Spectrum Evolving from a Nonsingular Initially de
Sitter Cosmology and the Microwave Background Anisotropy,” Sov. Astron. Lett. 9,
302 (1983).

7Y. Akrami et al. [Planck],“Planck 2018 results. X. Constraints on inflation,”
[arXiv:1807.06211 [astro-ph.CO]].

8P. A. R. Ade et al. [BICEP and Keck], [arXiv:2110.00483 [astro-ph.CO]]
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The cosmological attractor models generalizes the prediction of R2

Starobinsky inflation.

The cosmological attractor models predict the same values of
observable parameter ns in the leading 1/N order approximation

ns ≃ 1− 2

N + N0
, (11)

α–attractor models have additional constant Cα in r prediction

r ≃ 12Cα

(N + N0)2
.
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E-folding number formulation

The analyze of slow-roll inflation in terms of the e-folding number
representation with A′ = dA/dN is the most convenient.

There exist two variant for interpretation of relation between time
derivative and e-folding number derivative:

1
d

dt
= H

d

dNe
and

2
d

dt
= −H

d

dN
.

In the case of the first type formulation, the inflationary interval in
the e-folding formulation is −65 < Ne < 0.
In the case of the second type formulation, inflationary interval in
the e-folding formulation is 0 < N < 65.
The second formation was applied in cosmological attractor
approximation 9 and we follow to the second formulation with

N = − ln
(

a
aend

)
.

9M. Galante, R. Kallosh, A. Linde and D. Roest, “Unity of Cosmological Inflation
Attractors,” Phys. Rev. Lett. 114 (2015) no.14, 141302 [arXiv:1412.3797 [hep-th]].
R. Kallosh and A. Linde, “Universality Class in Conformal Inflation,” JCAP 1307, 002
(2013) [arXiv:1306.5220 [hep-th]].
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From Eqs. (7)–(9), we get the following leading-order equations:

ln(H)′ = 2W,ϕVeff ,ϕ , (12)

ϕ′ = 4WVeff ,ϕ , (13)

where derivatives with respect to Ne are denoted by primes, W ≡ V /F
and the effective potential :

Veff (ϕ) =
1

3
ξ(ϕ)− F 2(ϕ)

4V (ϕ)
. (14)
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The slow-roll approximation (6) requires |ϵi | ≪ 1, |δi | ≪ 1, and |ζi | ≪ 1,
where the slow-roll parameters are as follows:

ϵ1 =
1

2

(H2)′

H2
≃ 1

2

W ′

W
, ϵi+1 = − ϵ′i

ϵi
, i ⩾ 1, (15)

ζ1 = −F ′

F
, ζi+1 = − ζ ′i

ζi
, i ⩾ 1, (16)

δ1 = − 4H2

F
ξ′ ≃ − 4V

3F 2
ξ′, δi+1 = − δ′i

δi
, i ⩾ 1. (17)

The relation between the tensor-to-scalar ratio r and square of the field
derivative:

r =
32W

F
V ′
eff =

8

F
(ϕ′)

2
. (18)

The spectral index of scalar perturbations ns can be presented via
derivatives of the effective potential:

ns = 1 +
d

dN
ln

(
r

η0

)
= 1 +

d

dN
ln

(
F 2r

V

)
= 1 +

V ′′
eff

V ′
eff

. (19)

The amplitude of the scalar perturbations :

As ≃
2H2

π2Fr
≃ 2W

3π2Fr
=

1

48π2V ′
eff

, (20)
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α-attractor generalization

We consider the model in slow-roll regime using the e-folding
number representation:

(ϕ′)2 ≃ V ′

V
F +

4ξ′V

3F
=

(
H2

)′
H2

F + 4H2ξ′. (21)

We present the first slow-roll parameters in terms of H2, ξ:

ϵ1 =
1

2

(H2)′

H2
, δ1 = −4H2ξ′

F
. (22)

The second slow-roll parameters are related with first slow-roll
parameters: ϵ2 = −ϵ′1/ϵ1, δ2 = −δ′1/δ1.

The spectral index of scalar perturbations and the tensor-to-scalar
ratio can be presented in terms e-folding numbers derivatives:

ns = 1− 2ϵ1 +
r ′

r
, (23)

r = 8|2ϵ1 − δ1| = 8

(
(H2)′

H2
+

4H2ξ′

F

)
=

8(ϕ′)2

F
. (24)
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Generalization of the α–attractors results

Accordingly to inflationary parameters of α-attractor models without
the Gauss-Bonnet term spectral index includes only logarithmic
derivative of tensor-to-scalar ratio

r ′

r
= − 2

N + N0
, and ns ≈ 1 +

r ′

r
. (25)

in the leading order of 1/N approximation.

The model without the Gauss-Bonnet term and exponential potential
leading to cosmological-attractor prediction was considered in 10

We generalize this model to the Einstein-Gauss-Bonnet gravity.

10V. Mukhanov, Eur. Phys. J. C 73 (2013), 2486 [arXiv:1303.3925 [astro-ph.CO]].
15 / 34



Exponential form
To generalize cosmological attractor approximation to inflationary models
with the Gauss-Bonnet term we compare (24) with (11):

r

8
=

(H2)′

H2
+

4H2ξ′

F
=

3Cα

2(N + N0)2
. (26)

For simplicity we suppose that all terms in this equation are proportional
to 1/(N +N0)

2 and get the same approximation of slow-roll parameter ϵ1
in leading 1/N order:

H2 = H2
0 exp

(
− 3Cβ

2(N + N0)

)
, ξ = ξ0 exp

(
3Cβ

2(N + N0)

)
, (27)

where Cβ is a constant. We substitute (27) to (26) and get:

r

8
=

3Cβ

2(N + N0)2

(
1− 4ξ0H

2
0

F

)
, (28)

fixing a relation between Cα and Cβ :

Cβ =
Cα

1− 4ξ0H2
0

F

, H2
0 ̸= F

4ξ0
. (29)
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Accordingly (24) the derivative of field is related with e-folding number:

(ϕ′)2 =
3Cα

2(N + N0)2
; ϕ′ =

ωϕ

√
3Cα

2

N + N0
, ωϕ = ±1 (30)

from here

ϕ = ωϕ

√
3Cα

2
ln

(
N + N0

Nϕ

)
, N + N0 = Nϕ exp

(
ωϕ

√
2

3Cα
ϕ

)
. (31)

Using (9), (27) and (31) we construct family of the models with the
Gauss-Bonnet interaction and potential with variable parameter Cα:

V = 3H2
0 exp

(
−3

2

Cβ

Nϕ
exp

(
−ωϕ

√
2

3Cα
ϕ

))
, (32)

ξ = ξ0 exp

(
3

2

Cβ

Nϕ
exp

(
−ωϕ

√
2

3Cα
ϕ

))
(33)

leading to appropriate inflationary scenarios. This model is generalization
of the general relativity model obtained in 11

11V. Mukhanov, Eur. Phys. J. C 73 (2013), 2486 [arXiv:1303.3925 [astro-ph.CO]].
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Obtained model

Thus, using all restriction we get the following model of slow-roll inflation
in terms of e-folding number:

Ṽ = V0 exp
(
− 2N2

0

N+N0

)
, ξ̃ = ξ0 exp

(
2N2

0

N+N0

)
, (34)

(35)

where ξ0 =
3M4

Pl

4V0
−

(Nb+N0)
2 exp

(
− 2N2

0
(Nb+N0)

)
32π2AsN2

0
and As = 2.1× 10−9 is

observation constraint. 12 Using all restriction to model constant we get
the following expression for inflationary parameters

ns = 1− 2

N + N0
− 2N2

0

(N + N0)
2 , r =

16N2
0

(
3M4

Pl − 4V0ξ0
)

3M4
Pl (N + N0)

2 .

12Y. Akrami et al. , A&A 641, A10 (2020); arXiv:1807.06211
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The observable values of ns
13 ns = 0.965± 0.04, allows us to restrict

values of N0. Indeed, the parameter N0 belongs to the following interval:

2 ⩽ N0 ⩽ 0.0199N − 0.510 + 0.0102
√
195N2 − 10000N + 2500.

Figure: The inflationary parameter ns as a function of N0 for different numbers
of e-foldings during inflation: N = 55 (blue solid curve), N = 60 (red dash
curve) and N = 65 (green dash-dot curve).

13Y. Akrami et al. , A&A 641, A10 (2020); arXiv:1807.06211
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We see in Fig. 1 that for any 55 ⩽ N ⩽ 65 it is possible to find
suitable values for N0, in particular, the constraint 2 ⩽ N0 ⩽ 5.06
corresponds to N = 65.

Note that in the case of ξ0 = 0, one can get an approximation the
inflationary parameters corresponding to the R2 inflation 14 putting
Cα = 1 and, so, N0 =

√
3/2 ≈ 0.87.

14A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)
A.A. Starobinsky, Phys. Lett. B 117, 175 (1982)
A.A. Starobinsky, Sov. Astron. Lett. 9, 302 (1983).
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The cosmological attractors models 15 lead to spectrum (11) in leading
order approximation and at the same time allow two different relations
between the tensor-to-scalar ratio and e-folding number: r ∼ (N + N0)

−2

and r ∼ (N + N0)
−1.

15Kallosh, R.; Linde, A. J. Cosmol. Astropart. Phys. 2013, 07, 002.
Galante, M.; Kallosh, R.; Linde, A.; Roest, D. Phys. Rev. Lett. 2015, 114, 141302
Roest, D. J. Cosmol. Astropart. Phys. 2014, 01, 007
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r ∼ (N + N0)
−1

Now we consider the effective potential of exponential form
supposing that the tensor-to-scalar ration is r ∼ (N + N0)

−1 .

Such as ξ = 3Veff +
24V ′

eff

r the expressions for the slow-roll
parameters ϵ1 and δ1 can be simplified as follows:

ϵ1 =
1

2

(
r ′

r
− V ′′

eff

V ′
eff

)
, δ1 =

(
r ′

r
− r

8
− V ′′

eff

V ′
eff

)
= 2ϵ1 −

r

8
, (36)

We assume that in the case of

r =
8r0

(Ne + N0)
(37)

the upper values of parameter r0 are rather small to save the
slow-roll regime during inflation.
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The choice of exponential effective potential Veff = Ceff exp
(
− C2

Ne+N0

)
and tensor-to-scalar ratio r = 8r0

(Ne+N0)
leads to the following model in

terms of e-folding number:

V =
r0 (Ne + N0)

4Ceff C2

(
exp

(
− C2

Ne

)) , ξ =
3Ceff exp

(
− C2

Ne+N0

)
(r0 (Ne + N0) + C2)

r0(Ne + N0)

(38)
Which leads to the following slow-roll parameters:

ϵ1 =
1

2(Ne + N0)
− C2

2(Ne + N0)
2 , (39)

ϵ2 =
−(Ne + N0) + 2C2

(Ne + N0) (−(Ne + N0) + C2)
(40)

δ1 = − r0 − 1

Ne + N0
− C2

(Ne + N0)
2 , (41)

δ2 =
(r0 − 1) (Ne + N0) + 2C2

(Ne + N0) ((r0 − 1) (Ne + N0) + C2)
(42)

C2 = − (2N0 − 1)N0
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The start point of inflation Nb is related to the appropriate value of the
spectral index:

ns = 1− 2

Nb + N0
− (2N0 − 1)N0

(Nb + N0)2
. (43)

Let us present minimal values of δ1 at key values of ns :

1 if ns = 0.961 then δ1 ≥ 1.7465,

2 if ns = 0.965 then δ1 ≥ 1.7186,

3 if ns = 0.969 then δ1 ≥ 1.6834.

The saving of appropriate values of spectral index ns = 0.965± 0.04
leads to the divination of δ1 from the slow-roll regime during inflation.
Thus, the reconstruction of a minimally coupled model in EGB gravity
leading to inflationary parameters of the cosmological attractor with
r ∼ (Ne + N0)

−1 during the slow-roll regime is impossible.
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Application of effective potential formulation

In the the case then F = M2
Pl the effective potential of obtained

model has the following form:

Veff = Ceff exp

(
− C2

N + N0

)
, (44)

where Ceff = − 3M4
Pl−4V0ξ0
12V0

, C2 = − 9CαM4
Pl

2(3M4
Pl−4V0ξ0)

=
3CαM4

Pl

8V0Ceff
.

The application of relation between spectral index and effective
potential leads to the second order correction

ns = 1− 2

N + N0
+

C2

(N + N0)2
, (45)

where a constant |C2| ≪ 60.

Also using effective potential formulation we calculate amplitude of
scalar perturbation

As =
(N + N0)

2

48π2Ceff C2
exp

(
C2

N + N0

)
. (46)
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Application of effective potential

To construct a set of inflationary models with the same function
ns(Ne) we put the condition that V ′

eff does not change.
It also guarantees that the parameter As does not change.
To get the same function ϕ(Ne) in the slow-roll approximation we
add the condition that the function W does not change. In other
words, we consider the model with a double differentiable function
f (ϕ)

F = M2
Pl f (ϕ), V = V0f (ϕ) exp

(
−ω0 exp

(
−
√

2

3Cα

ϕ

MPl

))
, (47)

ξ(ϕ) =

(
ξ0 +

3M4
Pl

4V0
(f (ϕ)− 1)

)
exp

(
ω0 exp

(
−
√

2

3Cα

ϕ

MPl

))
,

(48)
Note that we do not fix the parameter r(Ne):

r(Ne) =
12Cα

f · (Ne + N0)2
, (49)

The observation data gives restrictions on the function f . Other
restrictions on this function can be obtained from the condition that
the slow-roll approximation should be satisfied during inflation. We
do not change W (Ne), so, the parameters ϵi do not depend on f ,
whereas other slow-roll parameters depend on f .
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The case of an exponential function F

We consider exponential function f (ϕ)

f (ϕ) = f0 exp

(
βω0 exp

(
−
√

2

3Cα

ϕ

MPl

))
whereβis a constant

Using the relation between e-folding number and field we formulate
considering model in terms of e-folding number:

F = M2
Pl f0 exp

(
2N2

0β

Ne + N0

)
, V = f0V0 exp

(
2N2

0 (β − 1)

Ne + N0

)

ξ =

(
3M4

Pl f0 exp
(

2βN2
0

Ne+N0

)
− 3M4

Pl + 4ξ0V0

)
exp

(
2N2

0

Ne+N0

)
4V0

.

the corresponding tensor-to-scalar ratio can be presented such as

r =
16N2

0

(
3M4

Pl − 4V0ξ0
)

3M4
Pl f0(Ne + N0)2

exp

(
− 2N2

0β

Ne + N0

)
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To fix f0 we assume that at the end of inflation F = M2
Pl , therefore,

f0 = exp (−2N0β) .

From explicate form of the model slow-roll parameters
1 the condition |β| ⩽ 1/2 is necessary to get |ζ1| < 1 during inflation
2 at Ne = 0, we get δ1(0) =

8J
3
+ 2β, δ2(0) =

2
N0

− 2β(4J−3)
4J+3β

, where

J ≡ V0ξ0/M
4
Pl .

3 Let us consider the case N0 = 2 in detail. We get

− 1

2
⩽

4

3
J + 3β ⩽

1

2
, (50)

− 2 ⩽
2β(3− 4J)

4J + 3β
⩽ 0. (51)
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Also, we have the conditions |β| ⩽ 1/2. So, it follows from inequalities
(50) that |J| ⩽ 3/4. Note that J = 3/4 is excluded from expression for
the effective potential). In Fig. 2, the green domain corresponds to the
values of parameters J and β that satisfy inequalities (50) and (51). At
β = 0, we get the initial model with a constant F .

Figure: Possible values of parameters J and β are in green domain.
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Substituting the chosen values of the constants into formulas, we obtain

As =
V0(Nb + 2)2

32π2M4
Pl(3− 4J)

exp

(
− 8

(Nb + 2)

)
, (52)

r =
64(3− 4J)

3(Nb + 2)2
exp

(
4βNb

(Nb + 2)

)
. (53)

The values of the inflationary parameter r and the corresponding values
of V0 and ξ0 for Nb = 60 are presented in Table 1. For any values of
these parameters, ns = 928/961 ≃ 0.96566 and As = 2.1 · 10−9. One can
see that the parameter r increases with growth of J and all values of r ,
but one, do not contradict the observation data.
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Table: Model parameters and the corresponding values of r for the exponential
function F .

β J V0/M
4
Pl ξ0 r

−0.5 0.72 2.3556 · 10−11 3.0565 · 1010 0.00009614
−0.5 0.5 1.9630 · 10−10 2.5471 · 109 0.0008011
−0.3 0.5 1.9630 · 10−10 2.5471 · 109 0.001737
−0.1 0.45 2.3556 · 10−10 1.9103 · 109 0.004522
−0.1 0.2 4.31863 · 10−10 4.6311 · 108 0.00829
0 0.2 4.3186 · 10−10 4.6311 · 108 0.0122
0.1 −0.2 7.4595 · 10−10 −2.6812 · 108 0.03106
0.1 −0.4 9.0299 · 10−10 −4.4297 · 108 0.03760
0.2 −0.4 9.0299 · 10−10 −4.4297 · 108 0.0554
0.25 −0.45 9.4225 · 10−10 −4.7758 · 108 0.07011
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The effective potential can be applied to generation of inflationary
scenarios with another non-minimal coupling of field with Ricci
scalar.

We consider another form of nonminimal couplings that tends to a
constant at small values of the field:

F = M2
Pl f (ϕ), f (ϕ) =

1 + f̃ (ϕ)

1 + f̃ (ϕend)
, (54)

and get restriction to models constants to save slow-roll regime
during inflation and get appropriate value of tensor-to-scalar ratio.
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Conclusion

1 We introduce effective potential reformulation.

2 The effective potential approach allows us to reproduce inflationary
parameters in exact form using calculations in terms of e-folding
numbers directly.

3 We reformulate the problem of the slow-roll regime in
Einstein-Gauss-Bonnet gravity in terms of e-folding numbers

4 We construct model with variable values of parameters which leads
to the α-attractor approximation for inflationary parameters in
leading order approximation in Einstein-Gauss-Bonnet gravity.

5 And use this model and effective potential to construct appropriate
inflationary scenarios in Einstein-Gauss-Bonnet gravity with field
non-minimally coupled with gravity.
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Thank you for the attention
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