
1

International Conference on
Quantum Field Theory,
High-Energy Physics, and

Cosmology

July 18�21, 2022, BLTP, JINR

I.E.Shirokov
Moscow State University, Physical Faculty, Department of Theoretical

Physics

Multiloop calculations in N = 1 SQED with
Nf �avours regularized by higher derivatives

I.E.Shirokov Multiloop calculations in N = 1 SQED



2

Higher order calculations in supersymmetric theories

The report is based on

I. E. Shirokov and K. V. Stepanyantz, JHEP 2204 (2022) 108.

Calculations of higher order quantum corrections in N = 1 supersymmetric
theories are important for both theory and phenomenological applications.

L.Mihaila, Adv. High Energy Phys. 2013 (2013) 607807.

Most of these calculations were made in the DR-scheme.

L.V.Avdeev, O.V.Tarasov, Phys.Lett. B 112 (1982) 356;
I.Jack, D.R.T.Jones, C.G.North, Phys.Lett. B 386 (1996) 138;
Nucl.Phys. B 486 (1997) 479; R.V.Harlander, D.R.T.Jones,
P.Kant, L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.

This means that theory is regularized by dimensional reduction and
divergences are removed by modi�ed minimal subtraction.

W.A.Bardeen, A.J.Buras, D.W.Duke and T.Muta, Phys. Rev. D B 18 (1978) 3998;
W.Siegel, Phys.Lett. B 84 (1979) 193.
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Higher order calculations in supersymmetric theories

However, the dimensional reduction is not self-consistent.

W.Siegel, Phys.Lett. B 94 (1980) 37.

Removing of the inconsistencies leads to the loss of explicit supersymmetry:

L.V.Avdeev, G.A.Chochia, A.A.Vladimirov, Phys.Lett. B 105 (1981) 272.

As a consequence, supersymmetry can be broken by quantum corrections
in higher loops.

L.V.Avdeev, Phys.Lett. B 117 (1982) 317;
L.V.Avdeev, A.A.Vladimirov, Nucl.Phys. B 219 (1983) 262.
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Higher covariant derivative regularization

The higher covariant derivative regularization is a consistent regularization,
which does not break supersymmetry.

A.A.Slavnov, Nucl.Phys., B 31 (1971) 301; Theor.Math.Phys. 13 (1972) 1064.

In order to regularize a theory by higher derivatives it is necessary to
add a term with higher degrees of covariant derivatives. Then divergences
remain only in the one-loop approximation. These remaining divergences
are regularized by inserting the Pauli�Villars determinants.

A.A.Slavnov, Theor.Math.Phys. 33 (1977) 977.

The higher covariant derivative regularization can be generalized to the
N = 1 supersymmetric case

V.K.Krivoshchekov, Theor.Math.Phys. 36 (1978) 745;
P.West, Nucl.Phys. B 268 (1986) 113.

In this talk we will discuss quantum corrections in SQED regularized by
higher covariant derivatives.
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NSVZ β-function for N = 1 SQED with Nf �avors

The simplest particular case of the N = 1 gauge theory is the N = 1
supersymmetric electrodynamics (SQED) with Nf �avors, which (in the
massless case) is described by the action

S =
1

4e20
Re

∫
d4x d2θW aWa+

Nf∑
f=1

1

4

∫
d4x d4θ

(
ϕ∗
fe

2V ϕf+ϕ̃∗
fe

−2V ϕ̃f

)
,

where V is a real gauge super�eld, ϕf and ϕ̃f with f = 1, . . . , Nf are chiral
matter super�elds with opposite U(1) charges, and Wa = D̄2DaV/4. In
our notation the bare and renormalized coupling constants are denoted by
e0 and e, respectively.
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N = 1 SQED with Nf �avors, regularized by higher

derivatives

In order to regularize the theory by higher derivatives, it is necessary to
add the higher derivative term to the action:

Sreg =
1

4e20
Re

∫
d4x d2θW aR(∂2/Λ2)Wa

+

Nf∑
f=1

1

4

∫
d4x d4θ

(
ϕ∗
fe

2V ϕf + ϕ̃∗
fe

−2V ϕ̃f

)
,

where R(∂2/Λ2) is a regulator, e.g. R = 1 + ∂2n/Λ2n.
Another similar regulator function appears in the gauge �xing term

Sgf = − 1

32ξ0e20

∫
d4x d4θD2V K(∂2/Λ2)D̄2V,

where ξ0 is the bare gauge parameter. The minimal (Feynman) gauge
corresponds to ξ0 = 1 and R(x) = K(x). However, we will make
calculations for an arbitrary ξ0 and K(x) ̸= R(x).
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Pauli�Villars determinants

Adding the higher derivative term allows to remove all divergences beyond
the one-loop approximation. To remove one-loop divergences, we insert in
the generating functional the Pauli�Villars determinants:

Z[sources] =

∫
DV

( Nf∏
α=1

DϕαDϕ̃α

)
Det(PV,M)Nf exp

(
iSreg+iSgf+iSèñò

)

Det(PV,M)−1 =

∫
DΦDΦ̃ exp(iSΦ).

Here the action for the massive Pauli�Villars super�elds is given be the
expression

SΦ =
1

4

∫
d4x d4θ

(
Φ∗e2V Φ+ Φ̃∗e−2V Φ̃

)
+
(M

2

∫
d4x d2θ Φ̃ Φ+ c.c.

)
,

and it is important that the ratio of the Pauli�Villars mass M to the
regularization parameter Λ should not depend on the coupling constant.
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Renormalization

The considered theory is renormalizable.

A. A. Slavnov, Nucl. Phys. B 97 (1975) 155.

Therefore the ultraviolet divergences can be absorbed into the
renormalization of the coupling constant, of the gauge parameter, and of
the chiral matter super�elds ϕα and ϕ̃α. All chiral super�elds have the
same renormalization constant Z, such that ϕα,R =

√
Zϕα,

ϕ̃α,R =
√
Zϕ̃α for all values of α = 1, . . . , Nf .
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The renormalization group functions

It is convenient to encode the ultraviolet divergences in RGFs. It is
neccesary to distinguish between RGFs de�ned in terms of the bare
coupling constant,

β(α0) =
dα0

d ln Λ

∣∣∣∣
α=const

; γ(α0) = −d lnZ

d ln Λ

∣∣∣∣
α=const

,

and the ones standardly de�ned in terms of the renormalized coupling
constant by the equations

β̃(α) =
dα

d lnµ

∣∣∣∣
α0=const

; γ̃(α) =
d lnZ

d lnµ

∣∣∣∣
α0=const

,

where µ is a renormalization point.

A.L.Kataev and K.V.Stepanyantz, Nucl. Phys. B 875 (2013) 459.
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NSVZ β-function in N = 1 supersymmetric theories

In N = 1 supersymmetric theories the β-function is related to the
anomalous dimension of the matter super�elds by the equation

β(α, λ) = −
α2

(
3C2 − T (R) + C(R)i

jγj
i(α, λ)/r

)
2π(1− C2α/2π)

, where

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA.

V.Novikov, M.A.Shifman, A.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229 (1983) 381;
Phys.Lett. B 166 (1985) 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277 (1986) 456;
D.R.T.Jones, Phys.Lett. B 123 (1983) 45.

The NSVZ β-function was obtained from di�erent arguments: instantons,
anomalies etc.
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The NSVZ relation with the HD regularization

With the higher covariant derivative regularization loop integrals giving a
β-function de�ned in terms of the bare coupling constant are integrals of
total derivatives

A.Soloshenko, K.V.Stepanyantz, hep-th/0304083.

and even integrals of double total derivatives

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704 (2005) 445.

This allows to calculate one of the loop integrals analytically and to obtain
the NSVZ relation for the RG functions de�ned in terms of the bare
coupling constant. In the Abelian case this has been done in all loops

K.V.Stepanyantz, Nucl.Phys. B 852 (2011) 71; JHEP 1408 (2014) 096.

In the non-Abelian case proof is more complicated, it has also been done
in all loops

K.V.Stepanyantz, Eur. Phys. J. C 80 (2020) no.10, 911; JHEP 2001 (2020) 192.
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NSVZ β-function in N = 1 SQED with Nf �avours

RGFs de�ned in terms of the bare coupling constant are independent of
a renormalization prescription for a �xed regularization, but depend on a
regularization. In considered theory and in the case of using the higher
derivative regularization described above they satisfy the NSVZ equation

β(α0)

α2
0

=
Nf

π

(
1− γ(α0)

)
M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett. 42 (1985) 224;
Phys.Lett. B 166 (1986) 334.

in all loops for an arbitrary renormalization prescription.
In contrast, RGFs de�ned in terms of the renormalized coupling constant
depend on both a regularization and a subtraction scheme. For them
NSVZ realtion is valid only for some certain renormalization prescriptions
called �the NSVZ schemes�. Some of them are given by the HD+MSL
renormalization prescription, when the theory is regularized by higher
derivatives and divergences are removed by minimal subtractions of
logarithms.

A.L.Kataev and K.V.Stepanyantz, Nucl. Phys. B 875 (2013) 459.
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Anomalous dimension de�ned in terms of the bare coupling

constant

Calculating superdiagrams with two external lines of the matter
super�elds one can obtain the function G related to the corresponding
part of the e�ective action by the equation

Γ
(2)
ϕ =

1

4

∫
d4p

(2π)4
d4θ

Nf∑
α=1

(
ϕ∗
α(p, θ)ϕα(−p, θ)+ϕ̃∗

α(p, θ)ϕ̃α(−p, θ)
)
G(α0,Λ/p)

If the function G is known, then the anomalous dimension de�ned in
terms of the bare coupling constant can be obtained with the help of the
equation

γ(α0) =
d lnG

d ln Λ

∣∣∣∣
α=const; p→0

where the condition p → 0 removes terms proportional to powers of p/Λ.
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Computer program for supergarph calculations

Explicit calculations in the framework of N = 1 superspace are rather
complicated, so special C++ program was created to deal with them. At
the present moment the programm can deal with N = 1 SQED with Nf

�avours and can calculate two-point Green function of matter �elds. The
program makes such steps of calculation:

1 Generation of all supergraphs in desired order of perturbation theory
using given vertexes and propagators.

2 Evaluation of so-called �D-algebra�, using standart proceedure of
removing supersymmetric covariant derivatives and taking integral
over superspace.

3 Removing objects with spinor indices by taking γ-matrix traces etc.

4 Reducing of remaining impulse intregrals, by collecting terms using
some integral transformations.

At present moment impulse integrals must be taken by hand or by using
other software.
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Example, one-loop calculation: Input
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Example, one-loop and two-loop calculation: Output

γ(α0) =
d lnG

d ln Λ

∣∣∣∣
q=0

= − d

d ln Λ

∫
d4K

(2π)4
2e20

K4R2
K

{
RK

−2e20Nf

∫
d4L

(2π)4

(
1

L2(L+K)2
− 1

(L2 +M2)((L+K)2 +M2)

)}
+

d

d ln Λ

∫
d4K

(2π)4
d4L

(2π)4
e40

RKRL

(
4

K2L4(K + L)2
− 2

K4L4

)
+O(e60).

Result coincides with

S.S.Aleshin, et al. Nucl. Phys. B 956 (2020), 115020;
A.L.Kataev and K.V.Stepanyantz, Theor.Math.Phys. 181 (2014) 1531.
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Timing information

Operating system: Windows 10 x64

Processor: AMD Ryzen 5 1600 Six-Core Processor 3.20 GHz

RAM: 8 Ãá

Compiler: GNU GCC Compiler

Compilation options: -march=native, -O3

term ∼ N0
f 1 loop 2 loops 3 loops

ξ0 = 1 0.052 s 0.14 s 2.6 s

ξ0 ̸= 1 0.067 s 0.57 s 2 m 27 s

term ∼ N1
f 2 loops 3 loops

ξ0 = 1, m = 0 0.16 s 6.6 s

ξ0 ̸= 1, m = 0 0.52 s 13 m 49 s

ξ0 = 1, m ̸= 0 0.41 s 41.5 s

ξ0 ̸= 1, m ̸= 0 1.23 s 3 h 54 m

term ∼ N2
f 3 loops

ξ0 = 1, m = 0 4.2 s

ξ0 ̸= 1, m = 0 6.6 s

ξ0 = 1, m ̸= 0 35 s

ξ0 ̸= 1, m ̸= 0 2 m 58 s
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Three-loop anomalous dimension

γ(α0) =
d lnG

d ln Λ

∣∣∣∣
P=0

= −
d

d ln Λ

∫
d4K

(2π)4
2e20

K4RK
+

d

d ln Λ

∫
d4K

(2π)4
d4L

(2π)4
e40

RKRL

(
4

K2L4(K + L)2

−
2

K4L4

)
+Nf

d

d ln Λ

∫
d4K

(2π)4
d4L

(2π)4
4e40

R2
KK4

(
1

L2(L+K)2
−

1

(L2 +M2)((L+K)2 +M2)

)
+

d

d ln Λ

∫
d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4
8e60

RKRLRQ

[
−

1

3K4L4Q4
+

1

K4L2Q4(Q+ L)2
+

1

K2L4(K + L)2

×
1

(Q+K + L)2

(
1

Q2
−

2

(Q+ L)2

)]
+Nf

d

d ln Λ

∫
d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4
16e60 KµLµ

R2
KRLK4L4(K + L)2

×
(

1

Q2(Q+K)2
−

1

(Q2 +M2)((Q+K)2 +M2)

)
+Nf

d

d ln Λ

∫
d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4
8e60

R2
KRLK4

×
1

L2

(
2(Q+K + L)2 −K2 − L2

Q2(Q+K)2(Q+ L)2(Q+K + L)2
−

2(Q+K + L)2 −K2 − L2

(Q2 +M2)((Q+K)2 +M2)((Q+ L)2 +M2)

×
1

((Q+K + L)2 +M2)
+

4M2

(Q2 +M2)2((Q+K)2 +M2)((Q+ L)2 +M2)

)
− (Nf )

2 d

d ln Λ

×
∫

d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4
8e60

R3
KK4

(
1

Q2(Q+K)2
−

1

(Q2 +M2)((Q+K)2 +M2)

)(
1

L2(L+K)2

−
1

(L2 +M2)((L+K)2 +M2)

)
+O(e80),
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Chebishev polinomials method
The integrals are calculated using the Chebyshev polynomials method.

J. L. Rosner, Annals Phys. 44 (1967), 11.

The Chebyshev polynomials are de�ned as:

Cn(cos θ) ≡
sin ((n+ 1)θ)

sin θ
and (for t < 1) satisfy the important equation

1

1− 2tz + t2
=

∞∑
n=0

tnCn(z).

Consequently, the function (K − L)−2 = (K2 − 2KL cos θ + L2)−1, where θ is the
angle between the Euclidian four-vectors Kµ and Lµ, can be presented in the form

1

(K − L)2
=



1

K2

∞∑
n=0

( L

K

)n
Cn(cos θ), åñëè K > L;

1

L2

∞∑
n=0

(K

L

)n
Cn(cos θ), åñëè L > K.

Then the angular parts can be calculated with the help of the useful identities∫
dΩQ

2π2
Cm

(KµQµ

KQ

)
Cn

(QνLν

QL

)
=

1

n+ 1
δmnCn

(KµLµ

KL

)
;∫

dΩ

2π2
Cm(cos θ)Cn(cos θ) = δmn,

where dΩ is the element of a solid angle on a sphere S3 in the momentum space.

I.E.Shirokov Multiloop calculations in N = 1 SQED



20

Anomalous dimension and β-function de�ned in terms of

the bare coupling constant

γ(α0) = −α0

π
+

α2
0

2π2
+

α2
0Nf

π2

(
ln a+ 1 +

A1

2

)
− α3

0

2π3
− α3

0Nf

π3

(
ln a+

3

4
+ C

)
−α3

0(Nf )
2

π3

(
(ln a+ 1)2 − A2

4
+D1 ln a+D2

)
+O(α4

0),

where A1, A2, C, D1, and D2 are numerical parameters depending on
the regulator function R(x). To �nd the β-function de�ned in terms of
the bare coupling constant, we substitute the expression into the NSVZ
equation. For RGFs de�ned in terms of the bare coupling constant it is
valid in all loops for an arbitrary renormalization prescription
supplementing the higher derivative regularization. Therefore, the
four-loop β-function takes the form

β(α0) =
α2
0Nf

π
+

α3
0Nf

π2
− α4

0Nf

2π3
− α4

0(Nf )
2

π3

(
ln a+ 1 +

A1

2

)
+

α5
0Nf

2π4
+

α5
0(Nf )

2

π4

×
(
ln a+

3

4
+ C

)
+

α5
0(Nf )

3

π4

(
(ln a+ 1)2 − A2

4
+D1 ln a+D2

)
+O(α6

0).
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Anomalous dimension and β-function de�ned in terms of

the renormalized coupling constant

γ̃(α) = −
α

π
+

α2

2π2
+

α2Nf

π2

(
ln a+ 1 +

A1

2
+ g1,0 − b1,0

)
−

α3

2π3
+

α3Nf

π3

(
− ln a−

3

4
− C

−b2,0 + b1,0 − g2,0 + g1,0
)
+

α3(Nf )
2

π3

{
−

(
ln a+ 1− b1,0

)2
+

A2

4
−D1 ln a−D2 + b1,0A1

−g2,1
}
+O(α4).

β̃(α)

α2
= −

d

d lnµ

( 1

α

)∣∣∣∣
α0=const

=
Nf

π
+

αNf

π2
−

α2Nf

2π3
−

α2(Nf )
2

π3

(
ln a+ 1 +

A1

2
+ b2,0 − b1,0

)
+
α3Nf

2π4
+

α3(Nf )
2

π4

(
ln a+

3

4
+ C + b3,0 − b1,0

)
+

α3(Nf )
3

π4

{(
ln a+ 1− b1,0

)2
− b1,0A1 + b3,1

−
A2

4
+D1 ln a+D2

}
+O(α4).

It is known that the terms which do not contain Nf in anomalous dimension and
terms that are proportional to N1

f in β-function are scheme independent. One can

choose so-called "minimal scheme" where the �nite constants b1,0, b2,0, b3,0, g1,0,
g2,0, g3,0 can be chosen so as to set all scheme dependent terms to 0.
It can be done in all loops.

A. L. Kataev and K. V. Stepanyantz, Phys. Lett. B 730 (2014) 184;
I. E. Shirokov and K. V. Stepanyantz, JHEP 2204 (2022) 108.
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Anomalous dimension and β-function in the "minimal

scheme"

Result in the "minimal scheme":

γ̃(α) = −α

π
+

α2

2π2
− α3

2π3
+O(α4).

β̃(α) =
α2Nf

π
+

α3Nf

π2
− α4Nf

2π3
+

α5Nf

2π4
+O(α6).

Scheme-dependent terms coincide with the result obtained in DR-scheme.

γ̃DR(α) = −α

π
+

α2

2π2
+

α2Nf

2π2
− α3

2π3
+

α3Nf

π3

(
1− 3

2
ζ(3)

)
+

α3(Nf )
2

4π3
+O(α4),

β̃DR(α)

α2
=

Nf

π
+

αNf

π2
− α2Nf

2π3
− 3α2(Nf )

2

4π3
+

α3Nf

2π4
+

α3(Nf )
2

π4

(
− 5

6
+

3

2
ζ(3)

)
+
α3(Nf )

3

12π4
+O(α4)

I. Jack, D. R. T. Jones and C. G. North, Nucl. Phys. B 473 (1996), 308-322
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Conclusion

A new computer program, that can deal with supergraphs was
created in the framework of N = 1 SQED with Nf �avours.

Two-point Green-function was calculated with help of this program
in up to three loops.

In two loops result coincides with one obtained earlier by hand.

All calculations were made in arbitrary ξ-gauge. Gauge invariance of
the result is useful correctness check.

Using Chebishev polinomials techinique integrals were taken.

Four-loop β-function was obtained using NSVZ-relation.

All RGFs were also rewritten in terms of the renormalized coupling
constant. Scheme independent terms coincide with ones obtained in
DR-scheme.

Result was rewritten in the "minimal scheme". Existance of such
scheme was proved in all loops in (S)QED.
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Thank you for the attention!
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