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Bigravity

The Lagrangian is as follows

L = L(f ) + L(g) −
√
−gU(fµν , gµν),

where

L(f ) =
1

16πG (f )

√
−f f µνR (f )

µν ,

and

L(g) =
1

16πG (g)

√
−ggµνR (g)

µν + L(g)
M (ϕA, gµν),

and

U =
m2

2κ
F (gµαfαν).

Vladimir O. Soloviev Canonical Bigravity



Bigravity and bimetric theory: history

Bimetric theory: N. Rosen (1940)

f-g gravity: Isham, Salam, Strathdee (1971)

Strong gravitation: Zumino (1971)

Relativistic Theory of Gravitation (RTG) Logunov,
Mestvirishvili (1984)

Bigravity: Damour, Kogan (2002)

dRGT potential de Rham, Gabadadze, Tolley (2011)

Bimetric gravity (= bigravity): Hassan, R. Rosen (2011)

Multi-metric theories: Hinterbichler, R. Rosen (2012)
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The di�erence between gauge and coordinate transformations

δAµ = ∂µϕ

δqi = q̇iδt

In the General Relativity the role of Aµ is played by space-time
metric gµν and the coordinate transformations include
dynamics

xµ → x ′µ(xα) = xµ + ξµ(xα), (1)

δgµν = ξµ;ν + ξν;µ = (2)

= ġµνδt + gµν,kξ
k + gµαξ

α
,ν + gανξ

α
,µ (3)
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The �exible time

In the classical mechanics one may obtain invariance under
general time transformations

t → τ = τ(t), t = t(τ)

by adding a new variable q(t) ≡ t(τ) to the old variables
qi(t), then the corresponding velocity N = dt/dτ appears in
the Hamiltonian as a Lagrange multiplyer standing at the
constraint equation

Hnew = NR , R = p + Hold ≈ 0
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Embedding of space into space-time
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Lapse and shift

Field theory in 4-dimensional space-time requires 4 Lagrange
multiplyers and 4 constraints. These multiplyers arise in the
decomposition of 4-vector by the base formed of a unit normal
to the spatial hypersurface and three tangentional vectors to
this hypersurface

Nα(τ, x i) ≡ ėα(τ, x i) = Nnα + N ieαi .

The Hamiltonian of General Relativity or any other generally
covariant theory should have the following form

H =

∫ (
NR+ N iRi

)
d3x ,

where �rst class constraints are derived by varying of N , N i .
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Embedding of space in space-time (2)
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Bigravity: the two lightcones (Fig. by Kocic)
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Kucha�r's approach

Working with two coordinate frames: Xα and (τ, x i).

Embedding functions eα(τ, x i), and one-to-one map:

Xα = eα(τ, x i),

three tangential vectors eαi = ∂eα

∂x i
.

Two unit normal vectors: nα and n̄α:

gµν n̄
µn̄ν = −1, gµν n̄

µeνi = 0,

fµνn
µnν = −1, fµνn

µeνi = 0.

Two metrics in their local bases (n̄α, eαi ) and (nα, eαi ):

gµν = −n̄µn̄ν + γij ē
i
µē

j
ν , fµν = −nµnν + ηije

i
µe

j
ν .
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A Tale of Two Metrics and Two Bases

With two space-time metrics we have two di�erent unit
normals and two bases

(nα, eαi ), (n̄α, eαi ),

therefore we get two lapse functions and two shift vectors

N ,N i , N̄ , N̄ i .

It is suitable to replace N̄ and N̄ i by new variables u, ui

u =
N̄

N
, ui =

N̄ i − N i

N

These variable provide the coe�cients of transformation
between the two bases

n̄µ = unµ, ē iµ = e iµ − uinµ, n̄µ =
1

u
nµ − ui

u
eµi .
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On the interaction potential of the two metrics

The potential should be a scalar density constructed
algebraically of the two space-time metric tensors√

(−g)U(gµν , fµν)

or √
(−f )U(gµν , fµν).

Then function U should depend on the invariants of matrix
Y = g−1f = gµαfαν , or on the invariants of some matrix
function of Y. For example, Logunov et all in the Relativistic
Theory of Gravitation have taken the following expression

√
−gU =

√
−g

(
1

2
TrY − 1

)
−

√
−f
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On the orginal sin of a general potential

But, as Boulware, Deser had demonstrated (1972), in general
the Hamiltonian of massive gravity (where the second metric
was non-dymanical) did not have �rst class constraints. For
the corresponding bigravity theory (where the second metric
was dynamical) the Hamiltonian had only 4 �rst class
constraints. In both cases the number of degrees of freedom
was too large (one d.o.f. is super�uous)

6[γij ] + 6[ηij ]− 4[H,Hi ] = 8 > 7 = 2[massless] + 5[massive].

This result follows from the non-linear dependence of the
Hamiltonian on N̄ , N̄ i , or on u, ui

u =
N̄

N
, ui =

N̄ i − N i

N
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The role of potential

The di�eomorphism invariance requires

U(fµν , gµν) = U(invariants of Y),

where Y has the following components in space-time basis
(nµ, eµi ) constructed by means of metric fµν :

Y = g−1f = u−2

(
−[nµnν ] ui [nµeνi ]
uj [eµj nν ]

(
−uiuj + u2γ ij

)
[eµi eνj ]

)
,

The problem is the Boulware-Deser ghost arising due to

nonlinearity of
√
−gU in auxiliary variable u.

But is it possible to �nd a potential linear in u?
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de Rham, Gabadadze, Tolley and their potential

U =
4∑

n=0

βnen(X ), X =
√
Y, Y = ||gµαfαν ||
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On the sinless potential

The simplest choice of matrix Y = ||gµαfαν || gives non-linear
dependence on u of its invariants multiplyed on the invariant
volume dVg =

√
−g = Nu

√
γ or on the volume

dVf =
√
−f = N

√
η

Y = g−1f = u−2

(
−[nµnν ] ui [nµeνi ]
uj [eµj nν ]

(
−uiuj + u2γ ij

)
[eµi eνj ]

)
,

but the matrix X =
√
Y will get invariants linear in u−1,

therefore after multiplying them onto dVg =
√
−g = Nu

√
γ

we get expressions linear in u:

UdRGT =
i=4∑
i=0

βiei(X) .
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Symmetric polinomials of matrix Xµ
ν =

√
||g−1f ||µν

written through traces

e0 = 1,

e1 = TrX ,

e2 =
1

2

(
(TrX )2 − TrX 2

)
,

e3 =
1

6

(
(TrX )3 − 3TrXTrX 2 + 2TrX 3

)
,

e4 = detX .
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Decomposition of matrices Y = g−1f and X =
√
Y

u =
N̄

N
, ui =

N̄ i − N i

N

Y = g−1f = u−2

(
−[nµnν ] ui [nµeνi ]
uj [eµj nν ]

(
−uiuj + u2γ ij

)
[eµi eνj ]

)
,

If Hassan-Rosen transform of variables

ui = v i + uD i
jv

j , ε−1 =
√
1− ηijv iv j .

is applied then

X =
√
Y = εu−1

(
−[nµnν ] v i [nµeνi ]
v j [eµj nν ]

(
−v iv j + ε−2uD ij

)
[eµi eνj ]

)
.
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The main problem

How can we calculate the matrix square root?

There are three ways:

1 To apply implicit functions

2 To use tetrads

3 To go to mini-superspace
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History of canonical approach to bigravity

2011: S. F. Hassan, Rachel A. Rosen, 1106.3344, 1109.3515, 1111.2070, S. F. Hassan, Rachel A.

Rosen, Angnis Schmidt-May, 1109.3230, J. Kluson, 1109.3052.

2012: K. Hinterbichler, R. A. Rosen, 1203.5783, D. Comelli, M. Crisostomi, F. Nesti, L. Pilo,

1204.1027, J. Kluson, 1211.6267, V.O. Soloviev, M.V. Tchichikina, 1211.6530, S. Alexandrov,

K. Krasnov, and S. Speziale, 1212.3614.

2013: J. Kluson, 1301.3296, D. Comelli, F. Nesti, L. Pilo, 1302.4447, V.O. Soloviev, M.V.

Tchichikina, 1302.5096, J. Kluson, 1303.1652, D. Comelli, F. Nesti and L. Pilo, 1305.0236, J. Kluson,

1307.1974, S. Alexandrov, 1308.6586.

2014: C. de Rham, L. Heisenberg and R.H. Ribeiro, 1408.1678, S.F. Hassan, Mikica Kocic, Angnis

Schmidt-May, 1409.1909, C. de Rham, L. Heisenberg and R.H. Ribeiro, 1409.3834. V.O. Soloviev,

1410.0048.

2015: V.O. Soloviev, 1505.00840.

2018: S.F. Hassan and A. Lundkvist, 1802.07267, M. Kocic, 1803.09752.

2020: V.O. Soloviev, 2006.16230.
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Fawad Hassan, Anders Lundkvist, Mikica Kocic
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De�nition of implicit matrix D i
j

There are two conditions:

1 Symmetry

D ij = D ji ,

2 Square-root-like relation to γij

γ ij = D i
kv

kD j
mv

m + ε−2D ikD j
k .

Therefore
D i

j = D i
j(v

m, γmn, ηmn),

indices of D i
j are moved up and down by ηij , η

ij .
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On the �ght with this problem (2011, 2018)

Hassan and Rosen invented a transformation of variables

ui = v i + uD i
jv

j ,

and supposed that the matrix square root could be expressed
as follows

X =

(
(− ε

u
)[nµnν ]

εv j

u
[nµeνj ]

εv i

u
[eµi nν ]

(
− εv iv j

u
+ 1

ε
D ij
)
[eµi eνj ]

)
,

where ε = 1/
√
1− ηijv iv j . Then the neccesary conditions are

D ij = D ji , γ ij = D i
kv

kD j
mv

m + ε−2D ikD j
k .

The main point is the introduction of a new implicit function
of the two spatial metrics D i

j . The detailed calculations were
provided 7 years later, in 2018.
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The alternative approach (2013)

The potential itself is treated as an implicit function

NŨ , Ũ =
√
ηU(u, ui , ηij , γij),

the Hamiltonian is as follows

H =

∫ (
NR+ N iRi

)
d3x ,

then the �rst class constrained are obtained by varying in N ,
N i ,

R = H + uH̄ + uiH̄i + Ũ , Ri = Hi + H̄i ,

and the second class constraints appear when the Hamiltonian
is varied in variables u, ui

S = H̄ +
∂Ũ

∂u
, Si = H̄i +

∂Ũ

∂ui
.
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The constraints algebra

As we know that 4 constraints are to be �rst class, we obtain
new equations after calculating their Poisson brackets. These
equations are linear in the potential and its �rst partial
derivatives

2ηjk
∂Ũ

∂ηij
+ 2γjk

∂Ũ

∂γij
− ui ∂Ũ

∂uk
= δikŨ ,

2ujγjk
∂Ũ

∂γkℓ
− uℓu

∂Ũ

∂u
+
(
ηkℓ − u2γkℓ − ukuℓ

) ∂Ũ

∂uk
= 0.

In its turn, the Poisson brackets of the other 4 constraints lead
to the homogeneous Monge-Ampere equation constructed of
the second derivatives of the potential in variables u, ui

det
∂2Ũ

∂ua∂ub
(x) = 0.
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On the magic of mathematics

D. Fairlie, A.N. Leznov, General solutions of the
Monge-Amp�ere equation in n-dimensional space, Journal of
Geometry and Physics 16, 385 (1995)

Th. Chaundy, The Di�erential Calculus, Oxford, 1935
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How the problem is solved?

Constraint S has weakly vanishing Poisson bracket with itself.
To preserve constraint S in the Hamiltonian evolution we need
to ful�l

{S,H} = 0,

and this condition gives the secondary constraint Ω.
The constraints S and Ω do not commute, it means they are
second class.

{S(x),S(y)} = −Ū iS(x)δ,i(x , y) + Ū iS(y)δ,i(y , x),
{R(x),S(y)} = (ui − uŪ i)S(x)δ,i(x , y)−

(
u(Ū iS),i + Ω

)
δ(x , y),

{S(x),Ω(y)} ≠ 0.

These relations are su�cient to avoid the Boulware-Deser
ghost.
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Kurt Hinterbichler, Rachel Rosen
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The tetrads

Vierbeins (tetrads) are square root of metric

g = ETE , gµν = EµAE
A
ν ,

g−1 = E−1(E−1)T , gµν = Eµ
AE

Aν ,

Therefore we can extract the square root of matrix Y

X =
√

g−1f =
√

E−1(E−1)TFTF = E−1FT ,

if only symmetry conditions are ful�lled

(FE−1)T = FE−1.
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The null tetrad gauge

There is a diagonal Lorentz symmetry generated by

L+AB =

(
0 L+0b
L+a0 L+ab

)
,

We can sacrify L+a0 to achieve the null tetrad gauge for EAµ

E0µ = n̄µ.

Then parametrisation of a boost

ΛA
B =

(
ε εvb
εv a Pa

b

)
, Pa

b = δab +
ε2

ε+ 1
v avb ,

allows to take the second tetrad FAµ in the form

FA
µ = ΛA

BFB
µ

where FB
µ is a second tetrad given in the null gauge.
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There are 21 pairs of canonically conjugate variables:

(eai , π
i
a), (f̃ai ,Π

i
a), (ṽi ,Π

i
0),

other variables are Lagrange multipliers:

N ,N i , u, ui ,
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Degrees of freedom calculation

DOF =
1

2
(n − 2nf .c. − ns.c.) .

BiGr (general) Bi-Gr (dRGT) Bi-Gr (tetrads)

(q, p) γij , π
ij , ηij ,Π

ij γij , π
ij , ηij ,Π

ij eia, π
ia, f̃ia,Π

ia, ṽi ,Π
i
0

n 24 24 42

1st class R,Ri R,Ri R,Ri , L
+
ab

nf .c. 4 4 7

2nd class � S,Ω S,Ω, L−ab,Gab,Si , La0
ns.c. 0 2 14

DoF 8 7 7
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Lagrange multiplyers and constraints

GR (metric): N ,N i . GR (tetrads): N ,N i , λab.
Bigravity (metrics): N ,N i , u, ui .
Bigravity (tetrads): N , N i , u, ui , λ+

ab, λa, λ
−
ab.

Lagrange primary constraint preservation consequence consequence 2

multiplyer constraint condition

N R ≈ 0

N i Ri ≈ 0

λ+
ab L+ab ≈ 0

λa La0 = 0 ui

λ−
ab L−ab = 0 Gab = 0 {L−ab,Gcd} ≠ 0 λ−

ab

u S ′ = 0 Ω = 0 {S,Ω} ≠ 0 u

ui Si = 0 {Si , La0} ≠ 0 λa
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Deciphering of the implicit functions

The Hassan-Rosen transformation becomes

ui = v i + uD i
jv

j ≡
(
f ia + ueia

)
va.

The coe�cients in the second class constraints algebra is now

Ū i = || ∂2Ũ

∂ui∂uj
||−1 ∂2Ũ

∂u∂uj
= −eiava.

The potential becomes linear in variables u, ui

Ũ = W + uiVi + uV ,

or
Ũ = W ′ + uV ′,

where ui is replaced by the r.h.s. of the �rst equation.
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Deciphering of the potential

V ′ = e
(
β1e1(w) + β2e2(w) + β3e3(w)

)
+ β0e,

W ′ =
e

ε

(
β1e0(z) + β2e1(z) + β3e2(z)

)
+ β4f .

where

zab = Pacxcb ≡ f̃iae
ib, Pac = δac +

ε2vavc
ε+ 1

,

wab = P−1
ac xcb ≡ f̃ iaηije

jb, P−1
ac = δac −

εvavc
ε+ 1

,

xcb = fice
ib, f̃ia = Pac fic , f̃ ia = P−1

ac f
ic ,
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The advantages of the tetrad approach

The potential (and the Hamiltonian) is linear in lapses
and shifts N , N̄ , N i , N̄ i

All the non-dynamical functions are Lagrange multipliers

The tetrad symmetry conditions are derived as the
secondary constraints

The crucial Hassan-Rosen transformation is not guessed,
but is derived

Neither implicit functions, nor Dirac brackets are used

The coe�cients of the constraint algebra are explicit
functions
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Bigravity in the simplest mini-superspace

The spatial geometry is assumed �at. There is only time
dependence.

fµν = (−N2(t), ω2(t)δij),

gµν = (−N̄2(t), ξ2(t)δij),

ρf = ρf (t), ρg = ρg (t),

pf = pf (t), pg = pg (t),

Then let us introduce new variables

u =
N̄

N
, r =

ω

ξ
.
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It is easy to calculate the square root matrix g−1f :

Y µ
ν =

(
g−1f

)µ
ν
= gµαfαν = diag

(
u−2, r 2δij

)
,

X =
√
Y = diag

(
+
√
u−2,+

√
r 2δij

)
≡ diag

(
u−1, rδij

)
.

The eigenvalues λi and the symmetric polynomials ei are

λ1 = u−1, λ2 = λ3 = λ4 = r ,

e0 = 1,

e1 = λ1 + λ2 + λ3 + λ4 = u−1 + 3r ,

e2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 = 3ru−1 + 3r 2,

e3 = λ1λ2λ3 + λ2λ3λ4 + λ1λ3λ4 + λ1λ2λ4 = 3r 2u−1 + r 3,

e4 = λ1λ2λ3λ4 = r 3u−1.
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The potential in mini-superspace

Take the notation

Bi(r) = βi + 3βi+1r + 3βi+2r
2 + βi+3r

3,

then

U =
2m2

κ
Nuξ3

(
B0(r) +

1

u
B1(r)

)
=

2m2

κ
N (uV +W ) ,

where

V =
1

N

∂U

∂u
= ξ3B0(r),

W =
1

N

(
U − u

∂U

∂u

)
= ξ3B1(r) ≡ ω3B1(r)

r 3
.
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Bigravity cosmology

Constraints

H2
g =

κg

6
ρg +

Λg

3
, Λg (r) = m2B0(r)

[κg

κ

]
,

H2
f =

[κf

6
ρf

]
+

Λf

3
, Λf (r) = m2 κf

κg

B1(r)

r 3

[κg

κ

]
,

Conservation laws

ρ̇g = −3NuHg (ρg + pg ),

ρ̇f = −3NHf (ρf + pf ),

Dynamical equations

Ḣg = −Nuκg

4
(ρg + pg ) +

N

6
m2(1− ur)B0

′(r)
[κg

κ

]
,

Ḣf =

[
−Nκf

4
(ρf + pf )

]
− N

6
m2 κf

κg
(1− ur)

B0
′(r)

r 3

[κg

κ

]
.
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Algebra of the constraints

Ṡ = {S,H} = N{S,R′} ≡ NΩ = 0,

Ω ≡ {S,R′} =
4m2

κ
ξ2 (ωHf − ξHg )B0

′(r) = 0,

Ω = Ω1Ω2,

The secondary constraint is factorized, so there are two
branches of cosmological solutions

Ω1 = 0, ↔ Hg = rHf , (4)

Ω2 = 0, ↔ β1 + 2β2r + β3r
2 = 0 = B0

′(r). (5)
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The �rst branch

Hf = r−1Hg ,

ṙ = Nr(1− ur)Hg , u = −{Ω1,R′}/{Ω,S},

H2
g =

8πG

3
ρ+m2r

([
β0
3r

+

]
β1 + β2r +

β3
3
r 2
)
,

H2
g =

m2

r

[
κf

κg

](
β1
3

+ β2r + β3r
2

[
+
β4
3
r 3
])

,

ρ =
m2

8πG

([
κf

κg

]
B1(r)

r
− B0(r)

)
,

ρ+ p =
m2

8πG
(1− ur)

([
κf

κg

]
D1(r)− 2B1(r)

r 2
− D1(r)

)
,

ρ̇ = −3NuHg (ρ+ p),

Ḣg = N

[
−4πGu(ρ+ p) +

m2

6
(1− ur)(β1 + 2β2r + β3r

2)

]
.
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The second branch

D1(r) ≡ β1 + 2β2r + β3r
2 = 0, ṙ = 0,

u =
Hf

Hg
, Ḣf = 0,

H2
g =

8πG

3
ρ+m2r

([
β0
3r

+

]
β1 + β2r +

β3
3
r 2
)
,

H2
f =

κf

κg

m2

r 3

(
β1
3

+ β2r + β3r
2

[
+
β4
3
r 3
])

,

ρ =
m2

8πG

([
κf

κg

]
B1(r)

u2r 3
− B0(r)

)
,

ρ̇ = −3NuHg (ρ+ p),

Ḣg = −4πGNu (ρ+ p) ,
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�What do you think?� shouted Razumihin, louder than ever, �you think I am attacking

them for talking nonsense? Not a bit! I like them to talk nonsense. That's man's one

privilege over all creation. Through error you come to the truth! I am a man because I

err! You never reach any truth without making fourteen mistakes and very likely a

hundred and fourteen. And a �ne thing, too, in its way; but we can't even make

mistakes on our own account! Talk nonsense, but talk your own nonsense, and I'll kiss

you for it. To go wrong in one's own way is better than to go right in someone else's.

In the �rst case you are a man, in the second you're no better than a bird.�

� Äà âû ÷òî äóìàåòå? � êðè÷àë Ðàçóìèõèí, åùå áîëåå âîçâûøàÿ ãîëîñ, � âû

äóìàåòå, ÿ çà òî, ÷òî îíè âðóò? Âçäîð! ß ëþáëþ, êîãäà âðóò! Âðàíü¼ åñòü

åäèíñòâåííàÿ ÷åëîâå÷åñêàÿ ïðèâèëåãèÿ ïåðåä âñåìè îðãàíèçìàìè.

Ñîâð¼øü - äî ïðàâäû äîéäåøü! Ïîòîìó ÿ è ÷åëîâåê, ÷òî âðó.

Íè äî îäíîé ïðàâäû íå äîáèðàëèñü, íå ñîâðàâ íàïåðåä ðàç ÷åòûðíàäöàòü, à

ìîæåò, è ñòî ÷åòûðíàäöàòü, à ýòî ïî÷åòíî â ñâîåì ðîäå; íó, à ìû è ñîâðàòü-òî

ñâîèì óìîì íå óìååì! Òû ìíå âðè, äà âðè ïî-ñâîåìó, è ÿ òåáÿ òîãäà ïîöåëóþ.

Ñîâðàòü ïî-ñâîåìó - âåäü ýòî ïî÷òè ëó÷øå, ÷åì ïðàâäà ïî îäíîìó ïî-÷óæîìó; â

ïåðâîì ñëó÷àå òû ÷åëîâåê, à âî âòîðîì òû òîëüêî ÷òî ïòèöà!
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