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The Lagrangian is as follows

ﬁ — ﬁ(f) + ﬁ(g) YA _gU(f,va g/u/)7

where
T G(f V=R,
and
£ = Vg RE) + L) (6 6),
and 2
U= Fl(g"fw).
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Bigravity and bimetric theory: history

@ Bimetric theory: N. Rosen (1940)
o f-g gravity: Isham, Salam, Strathdee (1971)
e Strong gravitation: Zumino (1971)

Relativistic Theory of Gravitation (RTG) Logunov,
Mestvirishvili (1984)

Bigravity: Damour, Kogan (2002)

dRGT potential de Rham, Gabadadze, Tolley (2011)
Bimetric gravity (= bigravity): Hassan, R. Rosen (2011)
Multi-metric theories: Hinterbichler, R. Rosen (2012)
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The difference between gauge and coordinate transformations

0A, = 0,9
5q' = qg'ot

In the General Relativity the role of A, is played by space-time
metric g, and the coordinate transformations include

dynamics
xt = xM(x*) = x4+ E*(x%), (1)
5g,ul/ = fu;u + fu;u = (2)
= g;u/at + g,ul/,kgk + g,uag,ol{/ + gal/g,c:n (3)
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The flexible time

In the classical mechanics one may obtain invariance under
general time transformations

t =1 =1(t), t = t(7)

by adding a new variable g(t) = t(7) to the old variables
gi(t), then the corresponding velocity N = dt/d7 appears in
the Hamiltonian as a Lagrange multiplyer standing at the
constraint equation

Hnew:NRa R:p‘i_Hold%O
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Embedding of space into space-time
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Lapse and shift

Field theory in 4-dimensional space-time requires 4 Lagrange
multiplyers and 4 constraints. These multiplyers arise in the
decomposition of 4-vector by the base formed of a unit normal
to the spatial hypersurface and three tangentional vectors to
this hypersurface

N (7, x") = (7, x") = Nn“ + N'e?.

The Hamiltonian of General Relativity or any other generally
covariant theory should have the following form

H= / (NR + N'R;) d*x,
where first class constraints are derived by varying of N, N'.
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Embedding of space in space-time (2)
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Bigravity: the two lightcones (Fig. by Kocic)




Kucha¥'s approach

e Working with two coordinate frames: X and (7, x").
e Embedding functions (7, x’), and one-to-one map:

X =e(1,x'),
; o __ Oe®
three tangential vectors e = 5.

@ Two unit normal vectors: n® and A%:

=l =V =l UV

gui'n” = —1, guwi'ef =0,

funt'n” = —1, funtel =0.
@ Two metrics in their local bases (7, e®) and (n®, ef):
e,

— n n _i =/ — e i
8uv = — NNy, + f)/l'jeue;j/a f,uzx =—n,n, + Nij€,
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A Tale of Two Metrics and Two Bases

With two space-time metrics we have two different unit
normals and two bases

(n% "), (7% €f),

therefore we get two lapse functions and two shift vectors

N, N, N,N'.
It is suitable to replace N and N’ by new variables u, v’
U= — U =—
N’ N

These variable provide the coefficients of transformation

between the two bases
. . . 1 u'
R Sl g ST I
n, = un,, g, =e,—u'n, = un ue,..
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On the interaction potential of the two metrics

The potential should be a scalar density constructed
algebraically of the two space-time metric tensors

(_g) U(guua ﬂlu)

V(= )U(guw, fw)-

Then function U should depend on the invariants of matrix
Y = g~ !'f = ghf,,, or on the invariants of some matrix
function of Y. For example, Logunov et all in the Relativistic
Theory of Gravitation have taken the following expression

V=gVl = \/_(TrY—1> v
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On the orginal sin of a general potential

But, as Boulware, Deser had demonstrated (1972), in general
the Hamiltonian of massive gravity (where the second metric
was non-dymanical) did not have first class constraints. For
the corresponding bigravity theory (where the second metric
was dynamical) the Hamiltonian had only 4 first class
constraints. In both cases the number of degrees of freedom
was too large (one d.o.f. is superfluous)

6[v;] + 6[n;] — 4[H, Hi] = 8 > 7 = 2[massless] + 5[massive].

This result follows from the non-linear dependence of the
Hamiltonian on N, N', or on u, u'

7& ] /\_/i*Ni
N’ N
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The role of potential

The diffeomorphism invariance requires
U(fu, &) = U(invariants of Y),

where Y has the following components in space-time basis
(n*, el') constructed by means of metric f,,:

1o —[n"m] '.Ui[”uel{{']
Y=gf=u (u’[eﬁnu] (—u'td + vy [ele,] )

The problem is the Boulware-Deser ghost arising due to

nonlinearity of \/—gU in auxiliary variable w.
But is it possible to find a potential linear in u?
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de Rham, Gabadadze, Tolley and their potential

=

P/

4
Uzzﬁnen(X% X:\/vv Y = ||glwéfal/||
n=0
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On the sinless potential

The simplest choice of matrix Y = ||g'*f,, || gives non-linear
dependence on u of its invariants multiplyed on the invariant
volume dV, = \/—g = Nu,/7 or on the volume

dVe = vV—F = Ny/7j
—[n*n,] u'[n*e,i] >

1y 2 _ o i
V=g f=u ( Wlet'n)] (—u'v/ + A7) [el'e,]
but the matrix X = /Y will get invariants linear in v,
therefore after multiplying them onto dV, = \/—g = Nu,/y
we get expressions linear in u:

i=4
U4RGT = Z@fei(x) -
i=0
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Symmetric polinomials of matrix X = / Hg_lfHZ

written through traces

€ = ].7
& = TI"X,
1
e = 3 ((TrX)* — TrX?),
1
& = ¢ ((TrX)* = 3TeXTrX? + 2TrX?)
e, = detX.
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Decomposition of matrices Y = g~ and X = VY

u= — u =
N’ N
_  lp_ -2 —[n*n,] Ui[”ueui]
Y=gi=u (uj[e}‘nul (—u'td + P [el'e,] )

If Hassan-Rosen transform of variables

i i i -1 _ Ui
u'=v' +uD"v e =4/1—=nyvivi.

is applied then

X = N — ey ( —[n"n,) viln'e,i] ) '

vi[el'n,] (—v'v/ +e72uD¥) [el'e,]

Vladimir O. Soloviev Canonical Bigravity



The main problem

How can we calculate the matrix square root?

There are three ways:
© To apply implicit functions
@ To use tetrads

© To go to mini-superspace
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History of canonical approach to bigravity

2011 S. F. Hassan, Rachel A. Rosen, 1106.3344, 1109.3515, 1111.2070, S. F. Hassan, Rachel A.
Rosen, Angnis Schmidt-May, 1109.3230, J. Kluson, 1109.3052.

2012 K. Hinterbichler, R. A. Rosen, 1203.5783, D. Comelli, M. Crisostomi, F. Nesti, L. Pilo,
1204.1027, J. Kluson, 1211.6267, V.O. Soloviev, M.V. Tchichikina, 1211.6530, S. Alexandrov,

K. Krasnov, and S. Speziale, 1212.3614.

2013 J. Kluson, 1301.3296, D. Comelli, F. Nesti, L. Pilo, 1302.4447, V.O. Soloviev, M.V.
Tchichikina, 1302.5096, J. Kluson, 1303.1652, D. Comelli, F. Nesti and L. Pilo, 1305.0236, J. Kluson,
1307.1974, S. Alexandrov, 1308.6586.

2014 C. de Rham, L. Heisenberg and R.H. Ribeiro, 1408.1678, S.F. Hassan, Mikica Kocic, Angnis
Schmidt-May, 1409.1909, C. de Rham, L. Heisenberg and R.H. Ribeiro, 1409.3834. V.O. Soloviev,
1410.0048.

2015: v.0. Soloviev, 1505.00840.

2018 S.F. Hassan and A. Lundkvist, 1802.07267, M. Kocic, 1803.09752.

2020 V.0. Soloviev, 2006.16230.
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Fawad Hassan, Anders Lundkvist, Mikica Kocic
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Definition of implicit matrix D’j

There are two conditions:
© Symmetry
DI =D/

@ Square-root-like relation to v

fy’j = Dikkajmv’" +€*2D’-kaj )

Therefore . '
Dl_i - Dlj(vmu ’anu nmn)a

indices of D'; are moved up and down by 7;, 1?.
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On the fight with this problem (2011, 2018)

Hassan and Rosen invented a transformation of variables

Ul = VI —+ LIDIJ-VJ,

and supposed that the matrix square root could be expressed
as follows

- ( (Dnl e ) |

ev! evivi 1 i
= lef'n,] (_T + gDJ> [ei"e.]
where ¢ =1/4/1 — n;viv/. Then the neccesary conditions are
DV = D/, ~i = DivkDiv™ + e2D*D/J.

The main point is the introduction of a new implicit function
of the two spatial metrics Dij. The detailed calculations were
provided 7 years later, in 2018.



The alternative approach (2013)

The potential itself is treated as an implicit function

NU, 0:\/7_]U(U, Uiﬂ]ij/Yij)7

the Hamiltonian is as follows

H= / (NR + N'R;) d*x,
then the first class constrained are obtained by varying in N,
N,
R:7-L+u7-_[+ui7-_[;+l7, R;:'H,’-i-?'_[,',

and the second class constraints appear when the Hamiltonian
is varied in variables u, u'

_ a0 _ o0
S—H—l—%, S,-—H,-—l—ﬁ.

Vladimir O. Soloviev Canonical Bigravity



The constraints algebra

As we know that 4 constraints are to be first class, we obtain
new equations after calculating their Poisson brackets. These
equations are linear in the potential and its first partial

derivatives
oU ou .90 -
My— + 22— —u'— =5, U
mkamj+ VJka%_j u@uk kY,
ou , OU ke 2 ke k ¢ o0
Wiy = g+ (0 =i =) =

In its turn, the Poisson brackets of the other 4 constraints lead
to the homogeneous Monge-Ampere equation constructed of
the second derivatives of the potential in variables u, u'

PU
et W(X) =0.
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On the magic of mathematics

D. Fairlie, A.N. Leznov, General solutions of the
Monge-Ampére equation in n-dimensional space, Journal of
Geometry and Physics 16, 385 (1995)

b

Th. Chaundy, The Differential Calculus, Oxford, 1935



How the problem is solved?

Constraint S has weakly vanishing Poisson bracket with itself.
To preserve constraint S in the Hamiltonian evolution we need
to fulfil

{S’ H} =0,

and this condition gives the secondary constraint .
The constraints S and Q do not commute, it means they are
second class.

{$(x).8()} = -U'S(x
{R(x),S(y)} = (v —u
{5(x),Q(y)} # 0.

These relations are sufficient to avoid the Boulware-Deser
ghost.

)0,i(x,y) + U'S(y)d,i(
0)S(x)d.i(x,y) = (u(U'S); + Q) d(x, y).

5 <
Ra¥
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Kurt Hinterbichler, Rachel Rosen
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Vierbeins (tetrads) are square root of metric
g:ETE7 g/ﬂ/: MAEII/Aa
g—l — E—l(E—l)T7 lLV EMEAV

Therefore we can extract the square root of matrix Y

X=+/gf =EYEN)TFTF=EFT,
if only symmetry conditions are fulfilled

(FEYT = FE.
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The null tetrad gauge

There is a diagonal Lorentz symmetry generated by

+
LXB = ( 9— L(-Ji-b ) 1
LaO Lab

We can sacrify L}, to achieve the null tetrad gauge for Eg,
EO[A = ﬁ;r

Then parametrisation of a boost

2

A 3 EVp 3
AB:< Pg)’ Pg:53b+€+1vavb’

ev?
allows to take the second tetrad Fpu, in the form
A _ pA TB
F. = NgF,

where F7 is a second tetrad given in the null gauge.



There are 21 pairs of canonically conjugate variables:
(eaia 71—;)7 (faiy nla)7 (‘7f7 I_IE))7
other variables are Lagrange multipliers:

i i
N,N,U,U,
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Degrees of freedom calculation

1
DOF = 3 (n—2nfc —nsc).
’ H BiGr (general) ‘ Bi-Gr (dRGT) ‘ Bi-Gr (tetrads) ‘
(q7 p) ,YU77TU7771_[7|—|U fYI_]?ﬂ-U)nI_]arIU eiavﬂia7ﬁaaniaa‘7i7n6
n 24 24 42
1st class R, R; R, R; R, R;, ij
nf.c. 4 4 7
2nd class — S,Q S,Q,L,,,Gap,Si, Lao
Ns.c. 0 2 14
DoF 8 7 7
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Lagrange multiplyers and constraints

GR (metric): N, N'. GR (tetrads): N, N', \p.
Bigravity (metrics): N, N', u, u'.
Bigravity (tetrads): N, N', u, u’, \},, A, A,

Lagrange primary constraint preservation consequence consequence 2
multiplyer constraint condition
N R~0
N Ri~0
¥ Y
)‘ab Lab ~0
A? Lp=0 u'
Ap I Lp=0] Gap=0 [{L, Ga}#0| A,
u S§'=0 Q=0 {§,Q} #0 u
0[S =0 | {S,Laol #0 e
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Deciphering of the implicit functions

The Hassan-Rosen transformation becomes
u'=v'+uD' v = (f’a + ue’a) V,.
The coefficients in the second class constraints algebra is now

i

= —e"v,.

120 20
ouow oudw

The potential becomes linear in variables u, v’
U=W+u'V;+uV,

or }
U=W +uV,
where u' is replaced by the r.h.s. of the first equation.
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Deciphering of the potential

V= e(ﬁlel(w) + Baea(w) + 5393(W)> + boe,
W' = £ (Breol2) + Paer(2) + real2)) + faf.

where
g2v, v
__ ¢ b a‘c
Zab = 7Dat:ch = f;'ae ) Pac - 5ac + )
e+1
o , EV,V
-1 _ fia b -1 avce
Wap = Poc Xep = F7n€”°, P :§ac—€+1,

Xeb = fice’ba f;'a - Pacfica e = P;:lflca
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The advantages of the tetrad approach

® The potential (and the Hamiltonian) is linear in lapses
and shifts N, N, N, N’

@ All the non-dynamical functions are Lagrange multipliers

@ The tetrad symmetry conditions are derived as the
secondary constraints

@ The crucial Hassan-Rosen transformation is not guessed,
but is derived

@ Neither implicit functions, nor Dirac brackets are used

@ The coefficients of the constraint algebra are explicit
functions
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Bigravity in the simplest mini-superspace

The spatial geometry is assumed flat. There is only time
dependence.

8w = (_I\_/2(t)7§2(t)6ij)7
pr = pf(t)v Peg = pg(t)>
pr = Pf(t)a Pg = Pg(t)a
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It is easy to calculate the square root matrix g—1f:

Ve = (7)) = " fu = diag (2 r7%;).
X = VY =diag (+\/F,+\/r_25u>5diag (u™,rdy)

The eigenvalues \; and the symmetric polynomials €; are

Moo= ulh M=M= =r,

e = 1,

&6 = M+N+ A+ N\ =ut+3r,

& = M+ Mz M+ Aoz + Aoy + Ay = 3wt + 372,
e3 = AMAAz + Aodsdg + Mdshg + Aoy = 37w + f3a

e = MM =riul
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The potential in mini-superspace

Take the notation
Bi(r) = Bi 4+ 3Biar + 3Biyar® + Bivsr’,

then

2m’ 1 2m?
U= %Nufz’ (Bo(r) + EBl(r)) - %N(UV + W),

where
Vo= o~ B0
1 ou\ _ 3Bi(r)
W = N(U—u%>—531(r):w r3 .
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Bigravity cosmology

Constraints

K A K
H2 = ZEpe+ S5 A(r) = miBo(r) |,
/\f Kf Bl(r) K
f 6" + 3’ (r)=m kg r¥ Lrl
Conservation laws
pg = —3NuHg(pg + pg),
pr = —3NH¢(pr + pr),
Dynamical equations
. Nuk N K
He = == (pe + pe) + g m(1—un)By/(r)| £
: Nlif N 2 Kf Bol(l’) K
He = |——1 S - .
f { 4 (pr + pf)} 6" ff,g( ur) rPF Lk
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Algebra of the constraints

= {S§,H} =N{S,R'} =NQ =0,
! 4m? 2 /
= {S,R}:Tf (wHf — EH,) By'(r) =0,
Q = Uy,

The secondary constraint is factorized, so there are two
branches of cosmological solutions

Ql = O, — Hg — er; (4)
Qz = O, — 81 + 2}92/’ + ,83[’2 =0= Bol(r). (5)
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The first branch

rtH

g
Nr(1 — ur)H,, = —{,R'}/{Q, S},
o3 3.

=[2] (3wl )
2220w

) (|| 2O2B0 ().

‘g

N {—47rGu(p + p) + %2(1 —ur)(fr +205,r + 63r2)] :
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The second branch

Dl(r) = 61+2ﬁ2r+53r220, r:O,
H .
u = F;’ Hf =0,
8rG Bo B3
2 2 2
Hy = TP‘*‘mf(Lr }51+52f+3 )7
Hf = ﬁ% (ﬁ1+52f+53f [ 64f3}>,
kg 3
m2 Rf Bl(l’)
™ (| _B
P 81 G (LJ u?rd O(r))’
p = —3NuHg(p+p),
Hg = —4nGNu(p+p),
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“What do you think?" shouted Razumihin, louder than ever, “you think | am attacking
them for talking nonsense? Not a bit! | like them to talk nonsense. That's man's one
privilege over all creation. Through error you come to the truth! | am a man because |
err! You never reach any truth without making fourteen mistakes and very likely a
hundred and fourteen. And a fine thing, too, in its way; but we can't even make
mistakes on our own account! Talk nonsense, but talk your own nonsense, and I'll kiss
you for it. To go wrong in one's own way is better than to go right in someone else’s.
In the first case you are a man, in the second you're no better than a bird.”

— [a Bbl 4To aymaete? — kpnyan Pasymuxun, ewe bonee BO3BbIWAS r0/10C, — BbI
AymaeTe, st 3a 10, 4To oHm BpyT? Bagop! S nwobnio, koraa Bpyt! Bpanbé ectb
€ANHCTBEHHAA 4YenoBedeCkas npnennernsa nepen sCEMmM OpraHnN3mMammn.

COBpéLLIb - A0 npasibl ,D,OVI,EI,QLLIb! [MoTomMy 5 n 4enoBek, 4TO BpY.
Hwu go ogHoii npaegbl He obupanuch, He COBpaB Hanepeq pa3 4YeTbipHagLaTh, a
MOXXET, N CTO YE€TbIPHAAUATL, @ 3TO NOYETHO B CBOEM POAE; HY, 2 Mbl N COBPAaTb-TO
ceoum ymom He ymeem! Tel MHe Bpu, fa Bpu no-ceoemy, n st Tebsi Torga nouenyo.
CoBpaTb NO-CBOEMY - Beflb 3TO MOYTU NyHLUE, YE€M NPaBAA MO OGHOMY MO-HY>KOMY; B

NEPBOM CNy4dae Tbl HENOBEK, a BO BTOPOM Tbl TONBKO 4HTO I'ITI/IL[a!
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