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Weinberg-Coleman results

INn 1973 E. Weinberg and S. Coleman investigated the mechanism of appearance of an
additional minimum in the effective potential after the addition of a one-loop quantum
V() correction.
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But accounting for all the corrections in the

) effective potential (RG) leads to the restoration of the
original minimum :
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Non-renormalizable potentials was not considered.
¢ Leading log @2 terms do not depend on arbitrariness.
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The effective potential

Path integral: Definition
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Bogoliubov-Parasyuk theorem

If we consider a divergent graph (G of any local field theory, then after subtraction all the
divergent subgraphs, the remaining divergence will also be local

R-operation: Incomplete R’-operation:

RG =]](1-K,)G, RG=(1-K,)R'G
Y

The remained leading divergence after applying the incomplete R-operation R’ G(n) looks like

An(p?)" | Ana(p?)" Ve Ar(p*)¢ Ap (p2)ke
€ € € em
Final result must not include these term: Such a restriction leads to recurrence relation:
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Example: SYM-theory

R’-operation for ladder-type diagrams:
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Recurrence relation for D=8 SYM:
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All-loop recursive equation:
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Sextic potential
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One-loop diagram: Two-loop diagram: Up =
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In the three-loop case, there are additional terms that give a non-linear contribution.
Thus, all loop corrections can be written as a recurrence equation:
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Arbitrary power of interaction

Given the insensitivity of the equation to the form of the potential, the recurrence equation
can be reduced to the following form
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Function for arbitrary power of interaction: Equation:
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Analytical and numerical solutions

Equation for the quartic interaction: Equation for the sextic interaction:
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The analytical solution maybe obtained for any series
with homogeneous diagram topology
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General form of solutions of the differential equation




Analytical and numerical solutions

Equation for the 5-th order interaction: Equation for the exponential interaction:
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Conclusions

« Inthis work we found recurrence relations for leading divergences
for scalar theories with arbitrary type of interactions.

« Inseparate cases we managed to obtain differential equations which
reproduce the results in the literature and generalize them.

« We have obtained numerical solutions in the general case of a power
potential.

« Foreven and odd power potentials, we obtained a solution in which
symmetry is restored.. The solution contains a discontinuity so that the
vacuum of the theory is metastable.



Further development

It would be interesting to get a differential equation in the case of
an arbitrary potential. One could, for example, consider potentials

of the cosine type

o In principle, there is no obstacle in future to consider scalar
electrodynamics with a non-renormalizable potential or a model

with many scalar fields and so on...
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