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The Starobinsky R? inflationary model

Starobinsky model of inflation, whose action is given by

M2
SStar.[g/jy] :TPI/CﬂX —8J (RJ+ 6m ZRJ) ) (1)

the only parameter is the mass m.

A.A. Starobinsky, Phys. Lett. B 91 (1980) 99,

A.A. Starobinsky, Phys. Lett. B 117 (1982) 175.

The action (1) is dual to the quintessence (or scalar-tensor gravity) action

Squint.[g,uuv ¢] = /d4XF |: Pl R — Mya,u(ﬁaugb Vsiar. (¢):| (2)

in terms of the canonical scalar ¢ and another metric g,,, in the Einstein
frame, related to g7, (in the Jordan frame) by a Weyl transformation.
The induced scalar potential is given by

Vstar.(¢) = *MP/m [1 — exp <—\/§ I\jp/)] . (3)
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The main cosmological parameters of inflation are given by the scalar tilt
ns and the tensor-to-scalar ratio r, whose values are constrained by the
combined Planck, WMAP and BICEP/Keck observations of CMB as

ns = 0.9649 £ 0.0042 (68%CL) and  r<0.036 (95%CL) .

The Starobinsky model is known as the excellent model of large-field
slow-roll cosmological inflation with very good agreement to the
observation data.

¢i/Mp | 5.2262 | 5.4971
ne 0.961 | 0.969
r | 0.0043 | 0.0027
N. | 49.258 | 62.335

The values of the inflationary parameters are sensitive to the duration of
inflation and the initial value of the inflaton field, ¢;.
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The F(R) gravity action can be rewritten as

Silgl, ol = | d*xv/—g! [Fo(R)— o)+ F] , (4)

where the new scalar field o has been introduced, and F (o) = =
After the Weyl transformation of the metric

2F 5(o)
Buv = . =) (5)
= a6

one gets the following action in the Einstein frame:

sE[gW,a]:/d“xF{MP'R M) g 00,0~ V|, (6)

where we have introduced the functions

3M,

F,o—F
h(o-) 2[—'2 R

4F2 ' (7)

F2 and V(o) = Mfs,
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Introducing the canonical scalar field ¢ instead of ¢ as

3 2
¢ = \/;MP/ In [szlﬁa} (8)

allows one to rewrite the action Sg to the standard (quintessence or
scalar-tensor) form:

2
Seligol = [ dixy=g | MR- 36 0,00,0 - V(o). 0)

The inverse transformation reads as follows:

V6 4v 2 &

Ry = |-=V4+—5|ex S, 10

J [Mp/ ot | 2PV 3, (10)
M2 | V6 2V 2 ¢

F = Pl —v,4+ 24/ = — 11
5 lMPI ,¢+M%I exp( 3MP/> ; (11)

where V 4 = %, defining the function F(R;) in the parametric form with
the parameter ¢.
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Being motivated by the potential (3), we find useful to introduce the
non-canonical dimensionless field

2 ¢ M2,
Y exp( 3/\/Ip,> 2F, >0 (12)

because it is (physically) small during slow-roll inflation. Defining

av _ _\fyd‘"/
do 3Mp dy ’

V(y) = V(¢) and using
we simplify Egs. (10) and (11) as follows:

2 VAR
R, = 2— -V, |, 13
J M%,( y y) ( )
v
F=—_— ¥ 14
y2 oy (14)

respectively.
In the Starobinsky model, we have

Votar. (v) = Vo(1—y)?,  where Vo = 3m*M3, . (15)
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In the spatially flat FLRW universe with the metric
ds® = — dt* + a°(t) (dx® + dy® + dz?) ,

the action (9) leads to the standard system of evolution equations:

6MZ H? = ¢> 42V, (16)
2MEH = — ¢*, (17)
¢+3Ho+ V4 =0, (18)

where H = a/a is the Hubble parameter,
a(t) is the scale factor,
and the dots denote the derivatives with respect to the cosmic time t.
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In the inflationary model building, the e-foldings number

Ne=1n (224, (19)
a

where agnq is the value of a at the end of inflation, is considered instead
of the time variable. Using the relation d/dt = — H d/dN,, one can
rewrite Eq. (16) as follows:

2V
S 20
¢ 6M/%/ - X (20)
where Q = H? and x = ¢/ = —¢/H, and the primes denote the
derivatives with respect to N,.
Equations (17) and (18) yield the dynamical system of equations:
1 1 1dV
Q=75Q% ¢=x, X=3-552X-57 - (21
Mz, 2M3, " Q do
We rewrite the last equation as
1 6M2, — x2 dV
r_ 3y — 3 _ PI - 22
X=X omz X 2V do (22)
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In the Einstein frame, the slow-roll parameters are

~ \ 2
MR (Ve (Y
2 \v /) 3\v )"

Vige 2y [ ~
W—MP/( Vv > 3V (V,y+yv,yy) .

The scalar spectral index ng and the tensor-to-scalar ratio r in terms of
the slow-roll parameters are given by

ns =1—6e+2n, r = 16¢ . (23)

In the slow-roll approximation, the function ¢(N) can be found as a

solution of )

M
qus'g%v@ (24)

when demanding that e = 1 corresponds to the end of inflation with
d = dend-
Equation (24) is equivalent to

y'= == (25)
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The (R + R + R3) gravity models of inflation

To the best of our knowledge, adding the higher-order terms in R was
first proposed in

J.D. Barrow and S. Cotsakis, Phys. Lett. B 214 (1988) 515.

A generic (R + R? + R3) gravity action is given by

1+4)
6m?

93

R2
1T 36

R

)

M2
Ss-gon. = T2 / W [(1+51)RJ+(

where we have introduced the three dimensionless parameters d;.
The corresponding inflaton scalar potential (7) is given by

_ 16 Vo352 [3(1 4 62) + 855]
3[12(1 + 01) + 4(1 + 6,)6 + 0352)°

V(o)

where the dimensionless variable & = o/m? has been introduced.

V(0) =0, V(&) >0at & >0, and V tends to zero at & — +oo, while
the potential has a maximum at some positive value of 6. The equation
V' = 0 has only one positive root given by G, = 6 1;—3‘31.
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Figure: The normalized potential V/(¢)/ Vo with 61 = 62 = 0 for §3 = 0.000001
(red), 83 = 0.000247 (blue), and d3 = 1/3 (green).
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To study the impact of the R3-term on inflation in more detail, let us
consider the simplest non-trivial case with §; = §, = 0, in which Eq. (12)
implies

&+ —52. (26)

Equation (26) is a quadratic equation on & as a function of y. The only

positive root of this equation is given by
\/1 + 365 (e\/%/MPf — 1) _ 1] .

Using Egs. (7) and (12), we find the scalar potential in terms of y or the
inflaton field ¢ as follows:

2 2
~ = -1 __ _ ——
=5, [\/1+353 (y-T—1) 1} =5

. 4V,
V =
) 2763y

v+ 250350 )] (v~ Vi 3B )

It is worth noticing that \N/Star,(y) is reproduced in the limit 3 — 0.
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The condition ¢; < ¢max. Yields the additional restriction on the possible
initial values of ¢, being represented by the blue curve on the
left-hand-side of Fig. 2.

The upper bound on the parameter 3 can be estimated by assuming the
observable value of ng to be calculated at the maximum of the potential.
Then we find

8v/03 (1 + 44/03 + 463)
3(3v05 +1) (255 +1)°

ns(d)max.) =1- (27)
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Since observations require ng > 0.960, we get §3 < 0.0002467. The
dependence of ns upon d3 is given on the right-hand-side of Fig. 2.
Therefore, the domain of allowed values of d3 and ¢ is highly restricted.

0.00025 0.970+

0.00020 0.968+

0.00015 0.966]

3,

0.000104
0.964+

0.00005
0.962

604
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My, &

Figure: The allowed range of d3 and ¢ from the observational constraints

(Planck): 0.961 < ns < 0.969 (left), and the dependence of ns upon d3 (right),
under the assumption that inflation started at the maximum of the potential.
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Deforming the scalar potential in the Starobinsky
model with analytic F-functions

The field y is small during slow-roll inflation. The inflaton potential (3)
as a function of y is

V(g) = V(y)= Vo[l -2y +y?] , (28)

where only the first two terms are essential for the CMB observables.
The inflaton potential (3) can therefore be modified as

V(y) = Vo [1 -2y + y2w(y)] (29)

with arbitrary analytic function w(y) without changing the CMB
observables predicted by the Starobinsky model, at least for those values
of w that are not very large. The Starobinsky model appears at w = 1.
The stability conditions should be satisfied with the potential (29):

_ M3,
3m? (2 + 2y3 d“ +y45E d2y )

y >0, Foo(y) >0 . (30)
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Equation (13) reads

._ R (1 1 ,dw
7= 23<y 2’ dy) ’ (1)
and Eq. (14) is given by
1 dw
F=Vo|S5-—w—y— | - 2
°<y2 “ ydy> (32

As a check, in the Starobinsky case, w =1 and V = V(1 — y)?, and

Eq. (13) gives
= (14 R - (33)
= 3m? '

Substituting it into Eq. (14), we get

_ M R

Fstar.(Rs) = Ty Ry + m? ) (34)

as it should be. Moreover, when w is an arbitrary constant, we find
F(RJ) - FStar.(RJ) —A 5 (35)

where A = V(1 — w) is a cosmological constant.
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Let us consider the case of
w(y) = wo +wiy, (36)

where wg < 1 and w; > 0 are constants.

The constant w; should be positive for the potential V' bounded from
below. The inequality wp < 1 is needed for positivity of a cosmological
constant, see Eq. (35).

Equation (31) leads to the depressed cubic equation

2 R 2
y3+(1+J2>y—Ey3+py+q=0 (37)
w1 3m w1

with the negative discriminant

32 R, \> 108
A= —(4p°+27?) = -2 (1+ L) — =<0
o) =3 (1o 502) — 5 <0

so that it has only one real root.
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The explicit F(R) function in this case is as follows:

i*ifw — 2w
Vo ) 0 1y

1
2 3\ 3
3 8 Ry 8
— ,,3 _

1
3
2 3
2 8 R, 8
—2w3 |1 1 14+ — 1—4/1 1
“1 +\/+27w1(+3m2)) + \/+27w1<+

5 1/3 5 1/3
wo = w3 <1+,/1+27w1> +(1— 1+27w1>
1/3 1/3
5 2/3 8 B 8
(i) (i)
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FNg

Ry/(3m?)
Figure: The scalar potential of the canonical inflaton field ¢ (left) and the

related F(R)-function (right) in the case of the deformation of the Starobinsky
model for some values of the parameter wi: 0, 1, 5, and 10.
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From Eq. (30) we get a simple formula for the second derivative F,, as

Fonly) = — Mo (38)
77 6m? (1 +wyy3) ’

so that the considering F(R) gravity model satisfies the stability
conditions at w; > 0.

Figure: The index ns (left) of scalar perturbations and the tensor-to-scalar ratio
r (right) as the functions of e-folds N, in the case | of the deformation of the
Starobinsky model for some values of the parameter wi: 0, 1, 5, and 10.
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The (R + R%/? + R?) gravity model of inflation

Let
1

6m 6m2

where we have introduced the dimensionless parameter §.

The R3/2 term appears in the (chiral) modified supergravity

S.V. Ketov and A.A. Starobinsky, Phys. Rev. D 83 (2011) 063512
[1011.0240].

S.V. Ketov and S. Tsujikawa, Phys. Rev. D 86 (2012) 023529
[1205.2918].

The R3/2-term in F(R) gravity arises in an approximate description of
the Higgs field with a small cubic term in its scalar potential and a large
non-minimal coupling to R

J.S. Martins, O.F. Piattella, I.L. Shapiro and A.A. Starobinsky,
2010.14639.

M2 P
F(R)) = P’ {RJ—i— RJ+ R?| (39)
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Given & > 0, we find

M2 95\> 3
F’RJ:TPI (w/RJ+4> 71—6(2762—16) >0 (40)

when § > 74\/§/9, and

M2 96
Frr =L (4+—=]>0 41
JRIR, 24m?2 ( + ﬁRJ) > ( )

only when § > 0.
Hence, the condition § > 0 is necessary to get a stable F(R) gravity
model for all R; > 0.

V.R. Ivanov, S.V. Ketov, E.O. Pozdeeva, S.Yu. Vernov, arXiv:2111.09058 21/31



The corresponding scalar potential (7) is given by

_ AV5(36VE +5)
V= (6 +95v5 +25)2 (42)

Equation (12) in this case is a quadratic equation on V&, and its only

real solution is

3(1— 94
1-y) ,

5 [95 y — \/3y(2782y — 16y + 16)} . (43)

o=

The potential can be rewritten as

-~ W 3
V = 23042 (s+35y)(s—90y)
3
243V46%y? 16(1 — y) 16(1 — y)
=" -7 1+ ——=+1 1+ —=-—-1
36 \o\PT oy, T t o2y ’

where we have introduced s = /3y(2702y — 16y + 16).
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When § = 4\/5/9, the F, function is a perfect square, and the potential
simplifies as

Vopecialy) = 2 3+ v7) (1= V7' (44)

or

% /373
Vspecia1(¢) = ?O (ed)/(\/gMP’) - ) (1 + 3e¢/ (VM) ) —2V/2/3¢/Mpi .
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Figure: The potential V() for 6 = 0 (red), § = 1/5 (blue), § = 4v/3/9
(green), and § =5 (black).
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The inflationary parameters

The inflationary parameters are given by

8y (3s(356(96° — 16)s + 7205° — 256)y” — s>5(395y + s))

(—96y +5)2(36y +5s)°s a
8y [720(4 — 96°)(276° — 16)y* + [(768 — 12156* — 4325°)s — 1445(455° — 16)]y”]
(—96y +5)°(30y +5)°s

ns =1+

(45)
and )
768y (—96°y + 5 +8y) (46)
© (-95y+s)(3dy +5)
The amplitude of scalar perturbations is given by
_ 5 3 2
(-96y+s)(Bdy+s)'m (a7)

" 3538044472 (—9 02y + 50 + 8y)?

The observed value of As determines the value of the parameter m.
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The slow-roll evolution equation allows us to relate N, with y at the end
of inflation,

Ne = (Z — 5—2> In[95° (96 y — 5) + 24 (1 — 4y) 6% + 8 (s + 4y)]

3 s
-2 _ > 2
+(6 8>|ny+45y No ,

where the integration constant Ny is fixed by the condition Ne(yenqd) = 0.
The analytic formula for Ny(6) is obtained by substituting N = 0 and

Y = Yend-

The condition € = 1 gives

3(4 — 302 4+ V/352) — /9(4 — 302 4 V3S)2 — 72(2 - 352)
2(2 — 382)(3 + 2v/3)

Yend =

It is worth noticing that this solution has no singularity at § = /2/3,
while yenq(0) is a smooth monotonically decreasing function.
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The slow-roll parameters ¢ and 1 remain finite in the limit § — +oco at
fixed y,

(2y +1)2 2(4y° +y +1)

O

€oo(y) =
Since the value of y at the end of inflation is determined by the condition
€(Yend) = 1, Yena also approaches a finite limit as § — 400, which is
given by a solution to the equation

2
oo = m =1 (49)

This equation has only one positive solution
yend‘é—H-oo - 3\/§ —5~0.196.
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When & = 44/3/9, the function F, simplifies as

FU=M7’2;’(x/5+xf3)2.

)

Accordingly, the slow-roll parameters are also simplified as

R (s y)? (50)

3(V7-y)" (3y7+y)°

and
YR+ -1)
3(vy—y) (3y¥+y)

In this special case we find

8y2 (Ty + 4 +y>+3
I v (Ty + 4y /Yy + y* +3/y) (52)

3(vy—y) 3yy+y)’

7’]:

and

.l Y AT (53)

2 2
3(vy—y)" 3vy+v)
The inflationary parameters in the special case are also given in Table 1.
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Table: The values of y, Ne and r corresponding to ns = 0.961 and n, = 0.969,
respectively, and the values of ye,q for some values of the parameter d.

J Yend | Yinp—o061 | Yinin—0.060 | Newo.oer | Neo.ogo | fns=0.961 | rn=0.960
0 | 0.464 0.0140 0.0112 493 62.3 0.0043 | 0.0027
0.2 | 0.395 | 0.00682 0.00505 45.0 56.8 0.0096 | 0.0065
%{5 0.299 | 0.00146 0.000968 48.1 60.9 0.0152 | 0.0099
1 | 0.279 | 0.000939 0.000616 49.4 62.4 0.0157 | 0.0102
5 | 0205 |432-1075 | 2.75-107° 56.3 69.7 0.0168 | 0.0108
10 | 0.199 | 1.08-107° | 6.91-107°% | 58.7 72.0 0.0168 | 0.0108
25 | 0.197 | 1.74-107° | 1.11-107° 61.4 74.8 0.0169 | 0.0108
50 | 0.196 | 4.34-1077 | 2.77-107" 63.5 76.9 0.0169 | 0.0108
100 | 0.196 | 1.09-1077 | 6.92-107% | 65.5 79.1 0.0169 | 0.0108
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Figure: The inflaton field values against the values of the parameter §. The
green area corresponds to the observational restrictions on ns and r. The blue
area is defined by the restrictions on r only. When é > 5, the allowed domain is
restricted by the lines § y? = const.
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CONCLUSIONS

o We studied several extensions of the Starobinsky inflation model of the
(R + R?) gravity in the context of F(R) gravity and scalar-tensor gravity.

e By deforming the scalar potential of the Starobinsky model, and
derived the corresponding F-function in the analytic form in a new model
with a single parameter, and found the lower and upper bounds on the
values of the parameters. The new model is very close to the original
Starobinsky model of inflation, as regards their inflationary parameters.
However, unlike the Starobinsky model, the inflaton (scalaron) acquires a
non-vanishing vacuum expectation value in those models.

e The modification of the Starobinsky model by the R3/2 term does not
lead to significant constraints on its coefficient in slow-roll inflation, at

least for 0 < § < 100.

The R3/2 term has a significant impact on the value of the
tensor-to-scalar ratio r.
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