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Введение

The process of photon propagation in a magnetized
equilibrium e+e− plasma taking into account the resonance in
the Compton scattering reaction is considered.
B . Be , Be = m2/e. The natural system of units is used:
c = ~ = kb = 1.
in CGS Be = m2c3/e~ ' 4.41 · 1013 Гс
Formulation of the problem. Find a solution of the kinetic
equation for the distribution function of photons in a
magnetized cold plasma for the process of Compton scattering,
taking into account the resonance on a virtual electron.
Previously, a similar problem was set in the work:
- Mushtukov A.A. et al. Compton scattering S-matrix and cross
section in strong magnetic field Phys. Rev. D. 2016. Vol. 93.
- Mushtukov A.A. et al. Statistical features of multiple Compton
scattering in a strong magnetic field at arxiv 2204.12271v1 2022
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An equilibrium plasma is considered at a temperature T � m
and field B ∼ 1012 directed along the z axis. The photon
distribution function is non-equilibrium.

Stationary case ∂f
(λ)
ω
∂t = 0

Then the kinetic equation given by:

(~n, ~5r f
(λ)
ω ) =

2∑
λ′=1

∫
dWλ→λ′×

×{fE ′(1− fE )f
(λ′)
ω′ (1 + f (λ)ω )− fE (1− fE ′)f (λ)ω (1 + f λ

′
ω′ ) .}

λλ′ = 1, 2 – polarization states of photons.
fω, fω′ – distribution functions of the final and initial photons.
fE , fE ′ – distribution equilibrium functions of the final and initial
electrons.
dWλ→λ′ – differential photon absorption rate (M.V.Chistyakov,
D.A.Rumyantsev, EPJ 2016).
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At T � m and B & 1012 G, the electrons will occupy the ground
Landau level. Therefore, we can put the Landau level of the initial
and final electrons ` = `′ = 0, and for n = 1, by studying the
behavior of the photon distribution function near the resonance.

x
df

(λ)
ω (z , x)

dz
=

2∑
λ′=1

∫ 1

−1
dx ′ϕλλ

′
ω (x , x ′)

[
f (λ

′)
ω (z , x ′)− f (λ)ω (z , x)

]
x = cos(θ), x ′ = cos(θ′) – the angles between the momentum of
the initial and final photons and the magnetic field, respectively.
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ϕλλ
′

ω (x , x ′) =
ne

32πmω

∑
s′′=±1

∫ 2π

0

dη

2π
×

×

∣∣∣Me1→e0γ(λ
′)

∣∣∣2 ∣∣∣M
e0γ(λ

′)→e
(s′′)
1

∣∣∣2
[ω2(1− x2) + 2ωm − 2eB]2 + (Γs′′

1 P0/2)2
×

×
(m + ω − ωxx ′ −

√
m + ω − ωxx ′)2 − x ′22eB√

(m + ω − ωxx ′)2 − x ′22eB

Where Γs′′
1 – total electron absorption width.

E ′′1 Γ±1 '
e2(eB)2

πM1

1

M1 ±m

∫ ζ

0
dxe−x

1− ζ · x√
x2 − ζ · x + 1

Here Mn =
√
m2 + 2 · eBn and ζ =

M2
1+m2

eB
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The equation can be conveniently rewritten in the following way

df
(λ)
ω (x)

dz
+ χ(λ)

ω (x)f (1)ω (x) =

=
1

x

∫ 1

−1
dx ′ ·

{
ϕλ1ω (x , x ′)f (1)ω (z , x ′) + ϕλ2ω f (2)ω (z , x ′)

}
,

where

χ(λ)
ω ≡ 1

x

∫ 1

−1
dx ′
{
ϕλ1ω (x ′) + ϕλ2ω (x ′)

}
The formal solution of the equation can be represented as follows
(C (λ)

ω determined by the boundary conditions)

f (λ)ω (z , x) = C (λ)
ω e−χ

(λ)
ω (x)·z +

1

x

∫ z

0
dz ′
∫ 1

−1
dx ′e−χ

(λ)
ω (x)·(z−z ′)×

×
{
ϕλ1ω (x , x ′)f (1)ω (z ′, x ′) + ϕλ2ω f (2)ω (z ′x ′)

}
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An obtained equation with z is the Volterra equation, which can be
solved using the Laplace transform.

Laplace transform from distribution functions

U (λ)
(s, x)→: f (λ)(z , x)

The resulting equation for U (λ)(s, x)

U (λ)
(s, x) = C (λ)

ω

1

χ(x) + s
+

1

x

∫ 1

−1
dx ′

1

χ(x) + s
×

×
{
ϕλ1(x , x ′)ωU

(1)
(s, x ′) + ϕλ2ω (x , x ′)U (2)

(s, x)
}
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Using the expansion in Legendre polynomials

f (λ)ω (z , x) =
∞∑
`=0

A
(λ)
` (z , ω)P`(x) ,

U (λ)
(s, x) =

∞∑
`=0

A
(λ)
` (s, ω)P`(x) ,

We obtain the system of algebraic equations:

A
(λ)
`′ (z , ω) = f0

∫ 1

−1
dx

P`′(x)

χ
(λ)
ω (x) + s

+
∞∑
`=0

∫ 1

−1
dx

∫ 1

−1
dx ′
P`′(x)P`(x ′)
xχ

(λ)
ω (x) + sx

×

×
{
A
(1)
` (s, ω)ϕλ1ω (x , x ′) + A

(2)
` (s, ω)ϕλ2ω (x , x ′)

}
,

где f0 = 1
eω/T−1
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Finally, the distribution functions of photons for two possible
polarization states λ = 1, 2 can be represented as follows:

f (λ)ω (z , x) =
1

2πi

∞∑
`=0

P`(x)

∫ σ+i∞

σ−i∞
ds · eszA(λ)

` (s, x)
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Коэффициент A при λ = 1 ` = 0

A
(1)

0 = −f (1/3)

(
32

(
π − i ln

(
3s + 8

3s− 8

))(
9sln

(
3s + 8

3s− 8

)
− 112

))
:

:

(
− 48i s

(
9s2 − 64

)
+ i
(
81s4 − 4096

)
ln

(
3s + 8

3s− 8

)
+ 4096π

)

f (γ) = f0/
ρ · ω2

∆−
;

s = s/
ρ · ω2

∆−

β = eB/m2 ' 0.023, ρ ' 8πα2ne
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Выводы

The solution of the kinetic equation for finding the distribution
function of photons of two possible polarizations in an
equilibrium e+e− plasma in a relatively strong magnetic field
in the cold plasma approximat.ion and taking into account
resonance on a virtual electron is considered.
The original equation is reduced to the Volterra equation in z
and the Fredholm equation in terms of the angular distribution.
Using the Laplace transform and the expansion of the
distribution function in Legendre polynomials, the problem is
reduced to a system of algebraic equations, the coefficients of
which can be easily calculated numerically.
The quadrature solution for the distribution function of two
possible photon polarizations is obtained.
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