Solution of the kinetic equation taking into account resonant the Compton process in a magnetized medium

Yarkov Alexey

Yaroslavl State University Department of Theoretical Physics. Russia. The "International Conference on Quantum Field Theory, High-Energy Physics, and Cosmology"

- The process of photon propagation in a magnetized equilibrium $e^{+} e^{-}$plasma taking into account the resonance in the Compton scattering reaction is considered.
$B \lesssim B_{e}, B_{e}=m^{2} / e$. The natural system of units is used:
$c=\hbar=k_{b}=1$.
in CGS $B_{e}=m^{2} c^{3} / e \hbar \simeq 4.41 \cdot 10^{13}$ Гc
- Formulation of the problem. Find a solution of the kinetic equation for the distribution function of photons in a magnetized cold plasma for the process of Compton scattering, taking into account the resonance on a virtual electron.
- Previously, a similar problem was set in the work:
- Mushtukov A.A. et al. Compton scattering S-matrix and cross section in strong magnetic field Phys. Rev. D. 2016. Vol. 93.
- Mushtukov A.A. et al. Statistical features of multiple Compton scattering in a strong magnetic field at arxiv 2204.12271v1 2022
- An equilibrium plasma is considered at a temperature $T \ll m$ and field $B \sim 10^{12}$ directed along the z axis. The photon distribution function is non-equilibrium.
- Stationary case $\frac{\partial f_{\omega}^{(\lambda)}}{\partial t}=0$
- Then the kinetic equation given by:

$$
\begin{aligned}
& \left(\vec{n}, \vec{\nabla}_{r} f_{\omega}^{(\lambda)}\right)=\sum_{\lambda^{\prime}=1}^{2} \int d W_{\lambda \rightarrow \lambda^{\prime}} \times \\
& \quad \times\left\{f_{E^{\prime}}\left(1-f_{E}\right) f_{\omega^{\prime}}^{\left(\lambda^{\prime}\right)}\left(1+f_{\omega}^{(\lambda)}\right)-f_{E}\left(1-f_{E^{\prime}}\right) f_{\omega}^{(\lambda)}\left(1+f_{\omega^{\prime}}^{\lambda^{\prime}}\right) \cdot\right\}
\end{aligned}
$$

$\lambda \lambda^{\prime}=1,2$ - polarization states of photons.
$f_{\omega}, f_{\omega^{\prime}}$ - distribution functions of the final and initial photons.
$f_{E}, f_{E^{\prime}}$ - distribution equilibrium functions of the final and initial electrons.
$d W_{\lambda \rightarrow \lambda^{\prime}}$ - differential photon absorption rate (M.V.Chistyakov, D.A.Rumyantsev, EPJ 2016).

At $T \ll m$ and $B \gtrsim 10^{12} \mathrm{G}$, the electrons will occupy the ground Landau level. Therefore, we can put the Landau level of the initial and final electrons $\ell=\ell^{\prime}=0$, and for $n=1$, by studying the behavior of the photon distribution function near the resonance.
$x \frac{d f_{\omega}^{(\lambda)}(z, x)}{d z}=\sum_{\lambda^{\prime}=1}^{2} \int_{-1}^{1} d x^{\prime} \varphi_{\omega}^{\lambda \lambda^{\prime}}\left(x, x^{\prime}\right)\left[f_{\omega}^{\left(\lambda^{\prime}\right)}\left(z, x^{\prime}\right)-f_{\omega}^{(\lambda)}(z, x)\right]$
$x=\cos (\theta), x^{\prime}=\cos \left(\theta^{\prime}\right)-$ the angles between the momentum of the initial and final photons and the magnetic field, respectively.

$$
\begin{aligned}
\varphi_{\omega}^{\lambda \lambda^{\prime}}\left(x, x^{\prime}\right) & =\frac{n_{e}}{32 \pi m \omega} \sum_{s^{\prime \prime}= \pm 1} \int_{0}^{2 \pi} \frac{d \eta}{2 \pi} \times \\
& \times \frac{\left|\mathcal{M}_{e_{1} \rightarrow e_{0} \gamma^{\left(\lambda^{\prime}\right)}}\right|^{2} \mid \mathcal{M}_{\left.e_{0} \gamma^{\left(\lambda^{\prime}\right)} \rightarrow e_{1}^{\left(s^{\prime \prime}\right)}\right|^{2}}^{\left[\omega^{2}\left(1-x^{2}\right)+2 \omega m-2 e B\right]^{2}+\left(\Gamma_{1}^{s^{\prime \prime}} P_{0} / 2\right)^{2}} \times}{} \\
& \times \frac{\left(m+\omega-\omega x x^{\prime}-\sqrt{\left.m+\omega-\omega x x^{\prime}\right)^{2}-x^{\prime 2} 2 e B}\right.}{\sqrt{\left(m+\omega-\omega x x^{\prime}\right)^{2}-x^{\prime 2} 2 e B}}
\end{aligned}
$$

Where $\Gamma_{1}^{s^{\prime \prime}}$ - total electron absorption width.

$$
E_{1}^{\prime \prime} \Gamma_{1}^{ \pm} \simeq \frac{e^{2}(e B)^{2}}{\pi M_{1}} \frac{1}{M_{1} \pm m} \int_{0}^{\zeta} d x e^{-x} \frac{1-\zeta \cdot x}{\sqrt{x^{2}-\zeta \cdot x+1}}
$$

Here $M_{n}=\sqrt{m^{2}+2 \cdot e B n}$ and $\zeta=\frac{M_{1}^{2}+m^{2}}{e B}$

The equation can be conveniently rewritten in the following way

$$
\begin{aligned}
& \frac{d f_{\omega}^{(\lambda)}(x)}{d z}+\chi_{\omega}^{(\lambda)}(x) f_{\omega}^{(1)}(x)= \\
& =\frac{1}{x} \int_{-1}^{1} d x^{\prime} \cdot\left\{\varphi_{\omega}^{\lambda 1}\left(x, x^{\prime}\right) f_{\omega}^{(1)}\left(z, x^{\prime}\right)+\varphi_{\omega}^{\lambda 2} f_{\omega}^{(2)}\left(z, x^{\prime}\right)\right\}
\end{aligned}
$$

where

$$
\chi_{\omega}^{(\lambda)} \equiv \frac{1}{x} \int_{-1}^{1} d x^{\prime}\left\{\varphi_{\omega}^{\lambda 1}\left(x^{\prime}\right)+\varphi_{\omega}^{\lambda 2}\left(x^{\prime}\right)\right\}
$$

The formal solution of the equation can be represented as follows ($C_{\omega}^{(\lambda)}$ determined by the boundary conditions)

$$
\begin{aligned}
f_{\omega}^{(\lambda)}(z, x) & =C_{\omega}^{(\lambda)} e^{-\chi_{\omega}^{(\lambda)}(x) \cdot z}+\frac{1}{x} \int_{0}^{z} d z^{\prime} \int_{-1}^{1} d x^{\prime} e^{-\chi_{\omega}^{(\lambda)}(x) \cdot\left(z-z^{\prime}\right)} \times \\
& \times\left\{\varphi_{\omega}^{\lambda 1}\left(x, x^{\prime}\right) f_{\omega}^{(1)}\left(z^{\prime}, x^{\prime}\right)+\varphi_{\omega}^{\lambda 2} f_{\omega}^{(2)}\left(z^{\prime} x^{\prime}\right)\right\}
\end{aligned}
$$

An obtained equation with z is the Volterra equation, which can be solved using the Laplace transform.

Laplace transform from distribution functions

$$
\overline{\mathcal{U}}^{(\lambda)}(s, x) \rightarrow f^{(\lambda)}(z, x)
$$

The resulting equation for $\mathcal{U}^{(\lambda)}(s, x)$

$$
\begin{aligned}
\overline{\mathcal{U}}^{(\lambda)}(s, x) & =C_{\omega}^{(\lambda)} \frac{1}{\chi(x)+s}+\frac{1}{x} \int_{-1}^{1} d x^{\prime} \frac{1}{\chi(x)+s} \times \\
& \times\left\{\varphi^{\lambda 1}\left(x, x^{\prime}\right)_{\omega} \overline{\mathcal{U}}^{(1)}\left(s, x^{\prime}\right)+\varphi_{\omega}^{\lambda 2}\left(x, x^{\prime}\right) \overline{\mathcal{U}}^{(2)}(s, x)\right\}
\end{aligned}
$$

Using the expansion in Legendre polynomials

$$
\begin{aligned}
& f_{\omega}^{(\lambda)}(z, x)=\sum_{\ell=0}^{\infty} A_{\ell}^{(\lambda)}(z, \omega) \mathcal{P}_{\ell}(x), \\
& \overline{\mathcal{U}}^{(\lambda)}(s, x)=\sum_{\ell=0}^{\infty} \bar{A}_{\ell}^{(\lambda)}(s, \omega) \mathcal{P}_{\ell}(x),
\end{aligned}
$$

We obtain the system of algebraic equations:

$$
\begin{aligned}
\bar{A}_{\ell^{\prime}}^{(\lambda)}(z, \omega) & =f_{0} \int_{-1}^{1} d x \frac{\mathcal{P}_{\ell^{\prime}}(x)}{\chi_{\omega}^{(\lambda)}(x)+s}+\sum_{\ell=0}^{\infty} \int_{-1}^{1} d x \int_{-1}^{1} d x^{\prime} \frac{\mathcal{P}_{\ell^{\prime}}(x) \mathcal{P}_{\ell}\left(x^{\prime}\right)}{x \chi_{\omega}^{(\lambda)}(x)+s x} x \\
& \times\left\{\bar{A}_{\ell}^{(1)}(s, \omega) \varphi_{\omega}^{\lambda 1}\left(x, x^{\prime}\right)+\bar{A}_{\ell}^{(2)}(s, \omega) \varphi_{\omega}^{\lambda 2}\left(x, x^{\prime}\right)\right\}
\end{aligned}
$$

где $f_{0}=\frac{1}{e^{\omega / T}-1}$

Finally, the distribution functions of photons for two possible polarization states $\lambda=1,2$ can be represented as follows:

$$
f_{\omega}^{(\lambda)}(z, x)=\frac{1}{2 \pi i} \sum_{\ell=0}^{\infty} P_{\ell}(x) \int_{\sigma-i \infty}^{\sigma+i \infty} d s \cdot e^{s z} \bar{A}_{\ell}^{(\lambda)}(s, x)
$$

Коэффициент A при $\lambda=1 \ell=0$

$$
\begin{gathered}
\bar{A}_{0}^{(1)}=-\overline{f(1 / 3)}\left(32\left(\pi-i \ln \left(\frac{3 \overline{\mathrm{~s}}+8}{3 \overline{\mathrm{~s}}-8}\right)\right)\left(9 \bar{s} \ln \left(\frac{3 \overline{\mathrm{~s}}+8}{3 \overline{\mathrm{~s}}-8}\right)-112\right)\right): \\
:\left(-48 i \bar{s}\left(9 \overline{\mathrm{~s}}^{2}-64\right)+i\left(81 \overline{\mathrm{~s}}^{4}-4096\right) \ln \left(\frac{3 \overline{\mathrm{~s}}+8}{3 \overline{\mathrm{~s}}-8}\right)+4096 \pi\right) \\
\overline{f(\gamma)}=f_{0} / \frac{\rho \cdot \omega^{2}}{\Delta_{-}} ; \\
\bar{s}=s / \frac{\rho \cdot \omega^{2}}{\Delta_{-}}
\end{gathered}
$$

$\beta=e B / m^{2} \simeq 0.023, \rho \simeq 8 \pi \alpha^{2} n_{e}$

- The solution of the kinetic equation for finding the distribution function of photons of two possible polarizations in an equilibrium $e^{+} e^{-}$plasma in a relatively strong magnetic field in the cold plasma approximat.ion and taking into account resonance on a virtual electron is considered.
- The original equation is reduced to the Volterra equation in z and the Fredholm equation in terms of the angular distribution.
- Using the Laplace transform and the expansion of the distribution function in Legendre polynomials, the problem is reduced to a system of algebraic equations, the coefficients of which can be easily calculated numerically.
- The quadrature solution for the distribution function of two possible photon polarizations is obtained.

