Romancing the Hubble: The H0 Problem and a Modified Cosmology

Nikita Nedelko

INR RAS Based on the work of A.S. Chudaykin, D.S. Gorbunov, N.S. Nedelko

July 19, 2022

- The Problem
 - Uh Oh
- Where We Looked
 - Datasets
 - Modifying Cosmology
- What We Found
 - Some Interesting Features

From CMB to H0

The Problem

•0

- The CMB is very well-mapped, leading to an H0 prediction with within-one-percent uncertainty: $H_0=67.36\pm0.54~{\rm km\,s^{-1}Mpc^{-1}}$ (Planck 2018)
- Any CMB-derived parameters of the "now" are heavily model-dependent

The Distance Ladder

- Independent of the CMB, can be built "from the ground up" with different sources for cross-reference
- Requires extensive observational data in many channels

The Problem

Figure: Fig.15 from Riess et al. [2112.045±0]

CMB data

- South Pole Telescope maps produce tension with Planck, but Planck also exhibits internal tensions
- Solution: Planck (TT, $\ell_{max} = 1000$) + SPT-3G (TE, EE, lensing)
- **3** An impoved LCDM fit, H0 discrepancy decreases from 4.2σ to 2.7σ , but is still significant

Large Scale Structure (LSS)

- A perturbational treatment of the BOSS DR12 LRG full-shape data
- BAO data from SDSS, eBOSS, 6dFGS
- **3** Local $S_8 (= \sigma_8 \sqrt{\Omega_m/0.3})$ measurements from KiDS-1000, DES Y3, HSC

H0 implementations

- Basic: a plain Gaussian prior bad for late-time modifications!
- Better: a nuanced treatment with the distanceladder package [2112.11567]

Altenatively, use the Pantheon SN likelihood (which doesn't use Cepheid calibration) instead of an H0 model. Crucially, the two may not be compatible due to M_{SN} calibration differences (up to 4σ !).

PDE

Phantom-crossing Dark Energy (PDE), a generalised late-time modification

- **1** DE energy density has a minimum at a_m : $\rho_{\text{PDE}}(a) = \rho_0 [1 + \alpha (a - a_m)^2 + \beta (a - a_m)^3]$
- **2** The DE equation of state is $w_{\text{PDE}}(a) = -1 \frac{a[2\alpha(a-a_m)+3\beta(a-a_m)^2]}{3[1+\alpha(a-a_m)^2+\beta(a-a_m)^3]}$
- **3** Vary a_m , α and β as free parameters

Without H0 data...

Figure: In PDE CMB+LSS produces a large H0 without any additional priors

Figure: With a z < 0.15 cap (same as in Riess et al.) on the SN sample, distanceladder produces an H0 distribution nearly identical to using a prior, but different PDE parameter distributions

Some Interesting Features

Figure: Without a z cap, distanceladder produces a low H0 value, closer to using CMB-calibrated Pantheon data

What We Found

0000

Conclusions

- Detailed modelling of H0 observations is very important
- Keep calibration in check when using SN Ia data
- Better understanding of high-z SNe is needed
- Impovement in accuracy of non-SN ladder methods will be crucial

