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What is chaos? Quantum chaos Classical chaos Conclusion

Classical and quantum chaos

• Classical chaos is closely related to the exponential sensitivity to initial
conditions (“butterfly effect”):

∥δz(t)∥ ∼ eκclt∥δz(0)∥,

where κcl is called the classical Lyapunov exponent
• Quantum chaos and quantum Lyapunov exponent are more subtle because

there are no trajectories in quantum world
• Due to this reason, we need to find alternative signatures of chaos that are

well defined in the quantum case and distinct chaotic and integrable systems
in the semiclassical limit
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OTOCs

• One of such signatures, which has recently grown popular, is the exponential
growth of the out-of-time-ordered correlation functions (OTOCs):

C(t) =
1

N2

N∑
i,j=1

〈
[q̂i(t), p̂j(0)]

†[q̂i(t), p̂j(0)]
〉

• In the semiclassical liimt, OTOCs capture the “butterfly effect”:

C(t) ≈ 1

N2

N∑
i,j=1

{
qi(t), pj(0)

}2
=

ℏ2

N2

N∑
i,j=1

∣∣∣∣ ∂qi(t)∂qj(0)

∣∣∣∣2 ∼ ℏ2 ∥z(t)∥
2

∥z(0)∥2 ∼ ℏ2e2κt

• OTOCs allow us to define the quantum Lyapunov exponent:

κq ≈ 1

2t
log

 1

ℏ2
1

N2

∑
i,j

Cij(t)

 as
1

κq
≪ t ≪ 1

κq
log

1

ℏ

• Note that eventually OTOCs are saturated, which reflects the breakdown of
the semsiclassical description (cf. the Ehrenfest time)
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Correspondence

• Unfortunately, the correspondence between the classical and quantum chaos
remains relatively poorely studied

• Therefore, it is useful to consider a tractable model, where this
correspondence can be checked directly

• As an example of such a model, we propose the vector mechanics with a
large number of degrees of freedom N and quartic interaction:

S =

∫
dt

[ N∑
i=1

(
1

2
ϕ̇2
i −

m2

2
ϕ2
i

)
− λ

4N

N∑
i,j=1

ϕ2
iϕ

2
j︸ ︷︷ ︸

symmetric

+α2 λ

4N

N∑
i=1

ϕ4
i︸ ︷︷ ︸

nonsymmetric

]

• We also assume the system to be thermal with an inverse temperature β

• We will show that the symmetric model (α = 0) is both classically and
quantum integrable, whereas the nonsymmetric model (α ̸= 0) is chaotic
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Augmented Schwinger-Keldysh technique
To calculate the regularized OTOCs, we use the augmented Schwinger-Keldysh
technique on the twofold contour (note that in our notation C(t) = Ctt;00):

C12;34 = −⟨ϕu+(t1)ϕu−(t3)ϕd+(t2)ϕd−(t4)⟩ − ⟨ϕu−(t1)ϕu+(t3)ϕd−(t2)ϕd+(t4)⟩
+ ⟨ϕu+(t1)ϕu−(t3)ϕd−(t2)ϕd+(t4)⟩+ ⟨ϕu−(t1)ϕu+(t3)ϕd+(t2)ϕd−(t4)⟩

= −⟨ϕuc(t1)ϕdc(t2)ϕuq(t3)ϕdq(t4)⟩ .
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Augmented Schwinger-Keldysh technique

• The vertices are the same as in the standard (onefold) technique
• In addition to the standard R/A/K propagators, the augmented technique

contains the W propagator that connects different folds:

iGR
0 (t1, t2) = −iθ(t12)

sin (mt12)

m
, iGA

0 (t1, t2) = iθ(−t12)
sin (mt12)

m
,

iGK
0 (t1, t2) =

1

2
coth

βm

2

cos (mt12)

m
, iGW

0 (t1, t2) =
eβm/2

eβm − 1

cos (mt12)

m
.

Quantum chaos 5 / 15



What is chaos? Quantum chaos Classical chaos Conclusion

Leading corrections to propagators

• In the leading order in 1/N , correlation functions in the full (α ̸= 0)
and O(N)-symmetric (α = 0) models coincide

• In this order, loop corrections to propagators result in a simple mass shift:

m̃2

m2
= 1 +

λ

2m3

m

m̃
coth

(
βm

2

m̃

m

)
• In the high-temperature limit, this transcendental equation is easily solved:

m̃ ≈ 4
√
λ/β, as βm ≪ 1 and βm ≪ λ/m3
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Leading corrections to vertices

In the leading order in 1/N , loop corrections to vertices are also easily summed:

B(t1, t2) = δ(t1 − t2) + 2iλ

∫ ∞

t0

dt3 G
R(t1, t3)G

K(t1, t3)B(t3, t2)

= δ(t12)− ν m̃ θ (t12) sin (µm̃t12) ,

where (the approximate identities hold in the high-temperature limit)

µ2 = 6− 2
m2

m̃2
≈ 6,

ν = µ− 4

µ
≈

√
2

3
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No chaos in the symmetric model

• The leading corrections to the averaged OTOC in the O(N)-symmetric
model are described by the so-called “ladder” diagrams:

• Substituting the ansatz C12;34 ∼ e2κt, where t = 1
2 (t1 + t2 − t3 − t4), into

the Bethe-Salpeter equation, we get the equation on κ:

1 ≈
64

N

w2λ2

m̃6

1

µ4

1(
1 + κ2

m̃2

)2
+

4

N

w2λ2

m̃6

5 + κ2

m̃2(
(µ + 1)2 + κ2

m̃2

)(
(µ − 1)2 + κ2

m̃2

)(
1 + κ2

m̃2

) ,

where w = eβm̃/2/
(
eβm̃ − 1

)
• All solutions to this equation are purely inaginary; hence, there is

no quantum chaos in the O(N)-symmetric model
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Chaos in the full nonsymmetric model
• Keeping in mind the leading contributions from nonsymmetric vertices and

using the same ansatz for C12;34, we get the equation on κ in the full model:

1

α2
≈ −

1536

N2

w2λ2

m̃6

1

µ6

1(
1 + κ2

m̃2

)2
−

24

N2

w2λ2

m̃6

(
5 + κ2

m̃2

) (
3µ2 − 3 + (µ2 + 6)κ2 + κ4

)
(
1 + κ2

m̃2

)(
(µ + 1)2 + κ2

m̃2

)2 (
(µ − 1)2 + κ2

m̃2

)2

• The solutions to this equation has a positive real part
• So, the maximal quantum Lyapunov exponent is as follows:

κq = α
8
√
6

µ3

wλ

m̃3

m̃

N

• The exponent scales as κq ∼ 4
√
λ/β in the high-temperature limit and is

exponentially suppressed in the low-temperature limit:

κhigh
q ≈ 4

3

α

N
4

√
λ

β
, κlow

q ≈
√
6
α

N

λ

m3
m exp

(
−βm

2

)
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Classical chaos

• The O(N)-symmetric model has exactly N independent conserved quantities,
so it is classically integrable

• Let us show that the full model has a positive Lyapunov exponent
• To do this, we numerically solve the following system of differential

equations with fixed N and total energy E, but arbitrary initial conditions:

żI = πIJ
∂H

∂zJ
,

Φ̇IJ = πIK
∂2H

∂zK∂zL
ΦLJ ,

where zI = (xi, pi) and π =

(
0 1N×N

−1N×N 0

)
• Then we extract the classical Lyapunov exponent from the maximal singular

value σmax of Φ:

κcl = lim
t→∞

1

t
log σmax(t),

repeat this calculation a 1000 times and average κ over all initial conditions
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Classical chaos in the nonsymmetric model
• Calculating the average classical Lyapunov exponent for different N and E

and fitting these points with a line, we establish the approximate behavior:

κ̄cl ≈ (1.3± 0.2)
1

N1.18±0.05

(
λ

β

)0.28±0.02

,

where we assume α = 1 and use the relation β ∼ N/E
• Note that the average exponent is slightly less than the maximal one,

although their qualitative behaviors are the same

Figure: The comparison of κ̄cl and κq for β̃ = 0.01
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Qualitative analysis

• In fact, the high-temperature behavior of classical and quantum Lyapunov
exponents can be deduced from dimensional grounds

• In the limit βm ≪ 1 and βm ≪ λ/m3, the quadratic part of the potential
energy is negligible, so the Hamiltonian acquires the following form (α = 1):

Hhigh ≈
N∑
i=1

1

2
π2
i +

λ

4N

∑
i ̸=j

ϕ2
iϕ

2
j

• This “pruned” Hamiltonian is invariant under the scale transformations:

t → γ−1t, ϕi → γϕi, H → γ4H

• Since the Lyapunov exponent has the dimension of inverse time, this
invariance implies the high-temperature dependence κ ∼ 4

√
E ∼ 4

√
λ/β
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Analogy to billiards
• Furthermore, we can compare the constant potential energy surface

(CPE surface) with a wall of a Sinai billiard
• It is known that Sinai billiards exhibit a chaotic behavior in the presence of

concave walls
• In the nonsymmetric model, the CPE surface becomes concave at energies

E > Econ = 3Nm4/2λ, which agrees with the emergence of chaos
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Figure: [Left] CPE curve for N = 2 and E < Econ (blue line), E = Econ (orange line),
E > Econ (green line). [Right] CPE surface for N = 3 and E ≫ Econ.
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Conclusion

• We suggest a tractable chaotic model — the nonlinear vector mechanics with
a quartic interaction and thermal initial state

• In the O(N)-symmetric case, both classical and quantum Lyapunov
exponents are zero

• In the nonsymmetric case, both exponents emerge in the high-temperature
limit, approximately coincide, and scale as κq ∼ κcl ∼ 1

N
4
√

λ/β

• This calculation supports the use of OTOCs as a diagnostic of quantum chaos
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Further research

Possible future directions:
• Nonthermal initial states — e.g., study the relationship between the

scrambling and delocalization of coherent states
• Other diagnostics of quantum chaos — e.g., Krylov complexity
• Nonstationary and dissipative generalizations
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