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Contents I, in a nutshell

Exclusive and Inclusive Reactions

Q2→∞
��

Hard Reactions.

Factorization Theorem(asympt. estimations)
��[

E(x1, ....)⊗ Φ(x1, ....)
]
⊕
[
Φ(y1, ....)⊗ E(x1, y1; ....)⊗ Φ(x1, ....)

]

Here, E(....) and Φ(....) denote the hard (perturbative) and soft
(non-perturbative) parts, respectively.
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Contents II, in a nutshell

[
E(....)⊗ Φ(....)

]

PDs (no EE)

��

k⊥=0

S=I

PDs (EE)

��
k⊥≈0 S 6=I

new PDs (EE)

��

k⊥ 6=0

S 6=I

A number of exterior and interior parameters:

I k⊥ = 0 and S = I:
{

P,S
}

- ext.,
{

k+, s+
}

-int.;

I k⊥ ≈ 0 and S 6= I:
{

P,S
}

- ext.,
{

k+, s+
}

-int.;

I k⊥ 6= 0 and S 6= I:
{

P,S
}

- ext.,
{

k+, s+, k⊥, s⊥
}

-int.;
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The role of interactions in the correlators

We begin with the forward Compton scattering (CS) amplitude which
takes the form of

Aµν = 〈P|a−ν (q)S[ψ̄, ψ,A] a+
µ (q)|P〉,

where S-matrix is given by

S[ψ, ψ̄,A] = T exp
{

i
∫

(d4z)
[
LQCD(z) + LQED(z)

]}
.

In contrast to the photon Fock states the hadron states cannot be
expressed through the relevant operators of creation and annihilation

P.S. The creation and annihilation hadron operators can be introduced with the help of the effective Lagrangian

describing the transition of partons onto hadrons. This is the so-called effective quark-hadron Lagrangian of

interaction.
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Making used the commutation relations of creation (or annihilation)
operators with S-matrix

[
a±µ (q), S[ψ̄, ψ,A]

]
=

∫
(d4ξ)e±iqξ δS[ψ̄, ψ,A]

δAµ(ξ)
with

δS[ψ̄, ψ,A]

δAµ(ξ)
= T

{∫
(d4z)

δLQED(z)

δAµ(ξ)
S[ψ̄, ψ,A]

}
,

the CS-amplitude can be rewritten as

Aµν =

∫
(d4ξ1)(d4ξ2)e−iq(ξ1−ξ2)〈P| δ2S[ψ̄, ψ,A]

δAµ(ξ1)δAν(ξ2)
|P〉

⇒
∫

(d4z)e−iqz〈P|T
{

[ψ̄(0)γνψ(0)] [ψ̄(z)γµψ(z)]S[ψ̄, ψ,A]
}
|P〉.
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Using Wick’s theorem and calculating the only quark operator
contraction, the simplest “hand-bag” diagram contribution to the
CS-amplitude reads ( δ(4)(momentum conserv.), as a common prefactor, is not shown.)

Mhand-bag
µν =

∫
(d4k) tr

[
Eµν(k)Φ(k)

]
,

where ( Here, the subscript “c” denotes the connected diagram contributions which we only consider.)

Eµν(k) = γµS(k + q)γν + γνS(k − q)γµ,

Φ(k) =

∫
(d4z) eikz〈P| T̃ ψ̄(0)ψ(z)S[ψ̄, ψ,A]|P〉c .

It is more compact to use, however, the Heisenberg representation of
correlators, i.e.

Φ(k) =

∫
(d4z) eikz〈P|ψ̄(0)ψ(z)|P〉H .

Notice that the Factorization Procedure is not yet applied !
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I SinceMµν involves the non-perturbative correlator,
〈P|O(0, z)|P〉, it cannot be calculated within the Standard
Theory. Indeed,

|P〉 = a+
h (ψ, ψ̄|A) |0〉 with a+

h being undefined in ST/QCD,[
ψ(0), a+

h (ψ, ψ̄|A)
]

+
→ unknown

I But instead,Mµν can be estimated with the help of the suitable
asymptotical regime, q2 = −Q2 →∞
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Factorization Theorem (factorization procedure) I: forward CS-amplitude

To illustrate the (typical) factorization procedure, we consider (here,
for the sake of brevity, we omit all possible Lorentz indices)

A =

∫
(d4k)E(k ,q) Φ(k),

where E(k ,q) is given by the propagator product and

Φ(k)
F
= 〈ψ̄(z)Γψ(0)〉,

with F= denoting the Fourier transform.
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I We have to choose the dominant directions dictated by the given
process kinematics. For CS-amplitude, we deal with the only
dominant directions associated with the plus light-cone direction.

I We have to introduce the definitions of the dimensionless parton
fractions as

d4k ⇒ d4k
∫ +1

−1
dxδ(x − k+/P+).

I We expand E(k ,q) around the chosen dominant direction.
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As a result, we obtain that

A(0) =

∫
(dx) E(xP+; q)

×
{∫

(d4k)δ(x − k+/P+)Φ(k)
}

if k⊥i -terms are neglected in the expansion;

and

A(i) =

∫
(dx)

∑

i

E (i)(xP+; q)

×
{∫

(d4k)δ(x − k+/P+)
i∏

i′=1

k⊥i′ Φ(k)
}

if k⊥-terms are essential in the expansion.
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Factorization Theorem (factorization procedure) II: DY-like hadron tensor

In the similar manner, we can treat the DY-like hadron tensor. Before
factorization, it reads

W =

∫
(d4k1)(d4k2)E(k1, k2,q) Φ1(k1)Φ̄2(k2),

where

E(k1, k2,q) = δ(4)(k1 + k2 − q) E(k1, k2,q)

Φ1(k1)
F1= 〈ψ̄(z1)Γ1ψ(0)〉,

Φ̄2(k2)
F2= 〈ψ̄(0)Γ2ψ(z2)〉

and Fi= denotes the corresponding Fourier transforms.
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As a result of factorization, we obtain that

W (0) =

∫
(dx1)(dx2)E(x1P+

1 , x2P−2 ; q)

×
{∫

(d4k1)δ(x1 − k+
1 /P

+
1 )Φ1(k1)

}

×
{∫

(d4k2)δ(x2 − k−2 /P
−
2 )Φ̄2(k2)

}
for k⊥ = 0

and

W (i,j) =

∫
(dx1)(dx2)

∑

i,j

E (i,j)(x1P+
1 , x2P−2 ; q)

×
{∫

(d4k1)δ(x1 − k+
1 /P

+
1 )

i∏

i′=1

k⊥1 i′ Φ1(k1)
}

×
{∫

(d4k2)δ(x2 − k−2 /P
−
2 )

j∏

j′=1

k⊥2 j′ Φ̄2(k2)
}

for k⊥ 6= 0.
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An alternative factorization procedure for DY-like hadron tensor

In contrast to our genuine-factorized forms, the approaches with
q⊥ 6= 0 and without the δ-function expansion result in

W̃ (0) =

∫
(dx1)(dx2)E(x1P+

1 , x2P−2 ; q)

×
{∫

(d2~k⊥1 )(d2~k⊥2 )δ(2)(~k⊥1 + ~k⊥2 − ~q⊥)

×
∫

(dk+
1 dk−1 )δ(x1 − k+

1 /P
+
1 )Φ1(k1)

×
∫

(dk−2 dk+
2 )δ(x2 − k−2 /P

−
2 )Φ̄2(k2)

}
,

where Φ(k1) and Φ̄(k2) cannot be independent each others.
This leads to the factorization breaking effects which should be
compensated by, for example, e−S(~k2

⊥/Λ2)-multiplication minimizing the
non-factorized effects. This way is not in our favour !
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Infinite momentum frame: the collinear limit, k⊥ = 0, and S = I

Consider the case of S = I (no QCD interactions), for the hand-bag
diagram we have the following

Aµν
∣∣∣
S=I

=

∫
(d4z1 d4z2) e−iq(z1−z2)〈P| :ψ̄(z1) Eµν(z1 − z2)ψ(z2): |P〉

or, focusing on γ+-projection in the correlator (within the momentum
repres.),

Mµν

∣∣∣
S=I

=

∫
(d4k) tr

[
Eµν(k) γ−

] ∫
(d4z) eikz〈P| :ψ̄(0)γ+ψ(z): |P〉

︸ ︷︷ ︸
Φ[γ+](k)

]
.
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Then, we use the Fourier transforms for the operators in the
correlator, we have

〈P| :ψ̄(0)γ+ψ(z): |P〉 =

∫
(d4k1d4k2)e−ik1z

×
[
ū(k2)γ+u(k1)

]
︸ ︷︷ ︸

L[γ+](k2,k1)

〈P|b+(k2)b−(k1)|P〉︸ ︷︷ ︸
δ(4)(k1−k2)M(k2,k1|P)

,

where

L[γ+](k2, k1) gives the Lorentz structure (Lorentz parametrization);
M(k2, k1|P) is the quark-hadronM-amplitude.
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After factorization in LO (Collinear Limit), we finally derive that

Mµν

∣∣∣
S=I

=

∫
(dx) tr

[
Eµν(xP+) γ−

]
Φ[γ+](x)

where (k = (k+, k−, ~k⊥))

Φ[γ+](x) =

∫
(d4k)δ(x − k+/P+)Φ[γ+](k)

F
=

〈P| :ψ̄(0)γ+ψ(0+, z−, ~0⊥): |P〉︸ ︷︷ ︸
∼ math. probability to find parton inside hadron

.

Up to now, we deal with the standard case !
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The (almost) collinear limit, k⊥ ≈ 0, and S 6= I

Now, we take into account the interaction and we still adhere the
(almost) collinear case of k⊥ ≈ 0 (k⊥-integrated functions):

Φ[γ+](x) =

∫
(d4k)δ(x − k+/P+)Φ[γ+](k)

F
=

〈P| T̃ ψ̄(0)γ+ψ(0+, z−, ~0⊥)S[ψ̄, ψ,A]|P〉c

qy #+
“Evolution” “Structure”

“Evolution” implies the explicit loop integrations, while “Structure” – the
implicit loop integration.
In the standard way, we first consider free operators to parametrize
the given correlator and S-matrix has been included to derive the
evolution of the already-introduced parametrizing functions;

In this case, we do not expect any new functions !
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k

k − ℓ

P

ℓ

k̃ + ℓ

k̃

P

k

⊗

k − ℓ

P P

k − ℓ

⊗

ℓ

Figure: The types of loop integrations in the corresponding correlators: the left panel corresponds to the
demonstration of the implicit loop integrations defined the Lorentz structure; the right panel – to the explicit lop
integrations contributing to the evolution integration kernels.
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The case of k⊥ 6= 0, and S 6= I

However, if the interaction encoded in the correlator and we together
with the essential k⊥-dependence, k⊥-unintegrated functions, we
have

Φ[γ+](x , k⊥) =

∫
(dk+dk−)δ(x − k+/P+)Φ[γ+](k)

F
=

〈P| T̃ ψ̄(0)γ+ψ(0+, z−,~z⊥)S[ψ̄, ψ,A]|P〉c

qy #+
“Evolution” “Structure”

In the nonstandard way, we parametrize the given correlator where
S-matrix has been presented from the very beginning.

In this case, we do have a possibility for the new functions !
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Derivation of the new k⊥-dependent functions

Let us begin with the well-know k⊥-dependent function f1:

Φ[γ+](k) = P+f1
(
x ; k2

⊥, (k⊥P⊥)
)

=

P+(k⊥P⊥)f (1)
1 (x ; k2

⊥) +
{

terms of (k⊥P⊥)n |n = 0,n ≥ 2
}
,

where k = (xP+, k−, ~k⊥) .

f1
(
x ; k2

⊥, (k⊥P⊥)
)

has been decomposed into the powers of (k⊥P⊥).
Keeping the term of decomposition with n = 1 represents the minimal
necessary requirement for the manifestation of new functions.
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Consider the second order of strong interactions, S(2)
QCD, in the

correlator:

〈O[γ+]〉(2) ≡ 〈P,S|T ψ̄(0)γ+ψ(z)S(2)
QCD[ψ, ψ̄,A] |P,S〉 =∫

(d4k)e−i(kz)∆(k2)

∫
(d4`)∆(`2)

∫
(d4k̃)M

(
k2, `2, k̃2, ...

)

×
[
ū(k)γ+k̂γ⊥α u(k − `)

][
ū(k̃)γ⊥α u(k̃ + `)

]
,

where

S(k) = k̂∆(k2), D⊥µν(`) = g⊥µν∆(`2), ∆(k2) =
1

k2 + iε
, k̂ = (kγ)

andM-amplitude is given by

M
(
k2

i , (kikj ), ...
)
δ(4)(k1 + k3 − k2 − k4) =

〈P,S|b+(k1)b−(k2)b+(k3)b−(k4)|P,S〉.
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We single out the region where |`| � {|k |, |k̃ |} and as a result we
obtain that

〈O[γ+]〉(2) ∼
∫

(d4k)e−i(kz)∆(k2)
[
ū(k)γ+k̂γ⊥α u(k)

]

×
∫

(d4k̃)
[
ū(k̃)γ⊥α u(k̃)

] ∫
(d4`)∆(`2)M

(
k2, `2, k̃2, ...

)
.

The next stage is to transform the spinor lines of this expression. For
the first spinor line, we write

[
ū(k)γ+k̂γα⊥u(k)

]
= S+kαβ[ū(k)γβu(k)

]
+ (axial)

=⇒ kα⊥
[
ū(k)γ+u(k)

]
+ (other terms),

where the following notation has been used

Sµ1µ2µ3µ4 =
1
4

tr
[
γµ1γµ2γµ3γµ4

]
.
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The second spinor line can be considered with the help of the
covariant (invariant) integration given by

kα⊥

∫
(d4k̃)

[
ū(k̃)γαu(k̃)

]
M
(

k̃2, (k̃P), ...
)

=

kα⊥

∫
(d4k̃) k̃αM

(
k̃2, (k̃P), ...

)
=

(k⊥P⊥)

∫
(d4k̃)

(k̃⊥P⊥)

P2
⊥
M
(

k̃2, (k̃P), ...
)
.
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One can observe that

P+(k⊥P⊥)f (1)
1 (x ; k2

⊥) ∼
[
ū(k)γ+u(k)

] ∫
(d4k̃)

[
ū(k̃)k̂⊥u(k̃)

]

×
∫

(d4`)∆(`2)∆(k2)M
(

k2, `2, k̃2, ...
)
.

In other words, this parametrization with the Lorentz combination
P+(k⊥P⊥) is related to the two spinor lines

[
ū(k)γ+u(k)

]
⇒ k+ ∼ P+,

[
ū(k̃)k̂⊥u(k̃)

]
⇒ (k⊥P⊥)

at g2-order.
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In the region of |k̃ | ∼ |k |, two spinor lines can be transformed into the
other spinor lines with the help of Fierz transformations:

[
ū(a)O1u(b)

][
ū(c)O2u(d)

]
=

1
4

∑

A,R1,R2

{1
4

tr
[
ΓAO1ΓR1

]}{1
4

tr
[
ΓAO2ΓR2

]}

×
[
ū(c)ΓR1u(b)

][
ū(a)ΓR2u(d)

]

with O1 = γ+γ⊥j γ5, O2 = 1, ΓA = γ⊥i , ΓR1 = γ+, ΓR2 = γ⊥i .

Thus, we obtain that
[
ū(↑x )(k)γ+γ⊥j γ5u(↑x )(k)

][
ū(↑x )(k)u(↑x )(k)

]
=

C
[
ū(↑x )(k)γ+u(↑x )(k)

][
ū(↑x )(k)γ⊥i u(↑x )(k)

]
,

where, for the fixed indices, i 6= j , the coefficient C is given by

C =
1

16
tr
[
γ⊥i γ

+γ⊥j γ5γ
−]tr

[
γ⊥i γ

⊥
i
]
.
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It can be readily inverted in order to get the following representation

[
ū(↑x )(k)γ+γ⊥1 γ5u(↑x )(k)

] ∫
(d4k̃)

∫
(d4`)

×∆(`2)∆(k2)M
(

k2, `2, k̃2, ...
)
⇒

k+iε+−P⊥s⊥ f̃ (1)
1 (x ; k2

⊥).
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I For the existence of Lorentz vector defined as ε+−P⊥s⊥ , it is
necessary to assume that the quark spin s⊥ is not a collinear
vector to the hadron transverse momentum P⊥.

Within the Collins-Soper frame, the hadron transverse momentum
can be naturally presented as

~P⊥ = (P⊥1 ,0).

Since the hadron spin vector S can be decomposed on the
longitudinal and transverse components as

SL + S⊥ = λP+/mN + S⊥,

we get P · S = ~P⊥ ~S⊥ = 0. Hence, it is natural to suppose that quark
s⊥ and hadron S⊥ are collinear ones.

I This is a kinematical constraint (or evidence) for the nonzero
Lorentz combination ε+−P⊥s⊥ and, therefore, for the existence of
a new function f̃ (1)

1 (x ; k2
⊥).
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The principal result

So, it explicitly shows that the function f̃ (1)
1 (x ; k2

⊥) and its analogues
must appear in the parametrization of the hadron matrix element, i.e.

Φ[γ+](k) ≡
∫

(d4z)e+i(kz)〈P,S|ψ̄(0) γ+ ψ(z)S[ψ, ψ̄,A] |P,S〉
∣∣∣
k−=0,k⊥ 6=0

k+=xP+

= iε+−P⊥s⊥ f̃ (1)
1 (x ; k2

⊥) + iε+−k⊥s⊥ f(2)(x ; k2
⊥) + ....,

where the ellipse denotes the other possible terms of
parametrization.
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We also observe that Lorentz structure tensor, ε+−P⊥s⊥ , associated
with our function resembles the Sivers structure, ε+−P⊥S⊥ in which
the nucleon spin vector S⊥ is replaced by the quark spin vector s⊥.
However, despite this similarity the Sivers function and the introduced
function f̃ (1)

1 (x ; k2
⊥) have totally different physical meaning.
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The practical applications: DY process and the new functions

The simplest example of application is related to the well-known
unpolarized Drell-Yan (DY) process, i.e. the lepton-production in
nucleon-nucleon collision:

N(P1) + N(P2)→ γ∗(q) + X (PX )

→ `(l1) + ¯̀(l2) + X (PX ),

with the initial unpolarized nucleons N.

The importance of the unpolarized DY differential cross section is due
to the fact that it has been involved in the denominators of any spin
asymmetries.
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At the leading order, the hadron tensor which describes the
unpolarized DY-process takes the following form:

W(0)
µν = δ(2)(~q⊥)

∫
(dx)(dy)δ(xP+

1 − q+)δ(yP−2 − q−)

×tr
[
γν γ

+ γµ γ
−]Φ[γ−](y)

{∫
(d2~k⊥1 )Φ̄[γ+](x , k⊥ 2

1 )
}
,

where

Φ[γ−](y) = P−2 f (y), Φ̄[γ+](x , k⊥ 2
1 ) = iε+−k⊥1 s⊥ f(2)(x ; k⊥ 2

1 ).
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Calculating the contraction of hadron tensor with the unpolarized
lepton tensor LU

µν , we derive that

dσunpol. ∼
∫

(d2~q⊥)LU
µνW(0)

µν =
∫

(dx)(dy)δ(xP+
1 − q+)δ(yP−2 − q−)

×(1 + cos2 θ)f (y)

∫
(d2~k⊥1 )εP2−k⊥1 s⊥=mf(2)(x ; k⊥ 2

1 ),

where

ε+−k⊥1 s⊥ = ~k⊥1 ∧ ~s⊥ ∼ sin(φk − φs)

with φA, for A = (k , s), denoting the angles between ~A⊥ and Ox̂-axis
in the Collins-Soper frame.
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Thus, the new k⊥-dependent function f(2)(x ; k⊥ 2
1 ) gives the additional

and additive contribution to the depolarization factor D[1+cos2 θ]

appeared in the differential cross section of unpolarized DY process.
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Conclusions

I We have introduced the new k⊥-dependent function f̃ (1)
1 (x ; k2

⊥)
and f(2)(x ; k2

⊥) which describe the transverse quark motion by
the quark alignment along the fixed transverse direction. The
introduced functions can be considered as a “in-between”
functions of the Sivers and Boer-Mulders functions.

I We have shown that, to the second order of strong interactions,
the new parametrizing function f̃ (1)

1 (x ; k2
⊥) can be related to the

function f (1)
1 (x ; k2

⊥) of (1) imposing the condition `� |k̃ | ∼ |k |
which corresponds to the regime where the appeared two spinor
lines are interacting by exchanging of soft gluon. Moreover, the
occurred four spinors generated by two spinor lines have the
polarizations aligned along the same transverse direction. In
physical terms, the k⊥-dependent function f̃ (1)

1 (x ; k2
⊥) which

describes the regime where k⊥-dependence (or the transverse
motion of quarks inside the hadron) has been entirely generated
by the quark spin alignment.
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Conclusions

I As a practical application of the new functions, we have
illustrated that the function f(2)(x ; k2

⊥) provides the additional
contribution to the depolarization factor D[1+cos2 θ] which is
associated with the differential cross section of unpolarized DY
process.

Thank you for your attention !
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