Large charge expansion meets epsilon expansion at six loops

Andrey Pikelner

BLTP JINR
in collaboration with A.Bednyakov

Looking for QFT simplifications

- Expansion in $1 / N_{c}$, non-planar diagrams suppressed

- Bubble chains contributions dominate in $n_{f} \rightarrow \infty$ limit

- Large charge expansion in powers of $1 / Q$ for diagrams with ϕ^{Q} operator insertion

Available predictions

- Large charge expansion, exact in $(g \cdot Q)$ 't Hooft coupling
- $O(2)$ model, leading Δ_{-1} and subleading Δ_{0}

$$
\Delta_{\phi^{n}}=\sum_{k=-1}^{\infty} \lambda^{k} \Delta_{k}(\lambda n)
$$

- $O(N)$ model, leading Δ_{-1} and subleading Δ_{0}

$$
\Delta_{Q}(N)=\sum_{k=-1}^{\infty} \lambda^{k} \Delta_{k}(g \cdot Q, N)
$$

- Critical dimension of operator ϕ^{Q} in $1 / N$ expansion

$$
\Delta_{Q}(\varepsilon)=\frac{u_{1}(Q, \varepsilon)}{N}+\frac{u_{2}(Q, \varepsilon)}{N^{2}}+\mathscr{O}\left(\frac{1}{N^{3}}\right)
$$

- ε-expansion results
- Four-loop calculation of the leading $Q \rightarrow \infty$ part
- Direct five-loop calculation of $\gamma_{1} \ldots \gamma_{6}$ and fit for γ_{Q}

Specifying the model

- We consider $O(N)$ symmetric ϕ^{4} theory, with N component field $\phi_{i}, i=1 \ldots N$

$$
\mathscr{L}=\frac{1}{2} \partial_{\mu} \phi_{i} \partial^{\mu} \phi_{i}+\frac{g}{4!}(\vec{\phi} \cdot \vec{\phi})^{2}
$$

- Anomalous dimensions of the operator $O_{i_{1} \ldots i_{Q}}$, which is traceless fully symmetric with Q indices
$O_{i_{1} i_{2}} \equiv \phi_{i_{1}} \phi_{i_{2}}-\frac{1}{N} \delta_{i_{1} i_{2}} \phi^{2}, \quad O_{i_{1} i_{2} i_{3}} \equiv \phi_{i_{1}} \phi_{i_{2}} \phi_{i_{3}}-\frac{1}{N+2} \phi^{2}\left(\phi_{i_{1}} \delta_{i_{2} i_{3}}+\phi_{i_{2}} \delta_{i_{1} i_{3}}+\phi_{i_{3}} \delta_{i_{1} i_{2}}\right), \quad \ldots$
- Six-loop $O(N)$ theory renormalization
- $Q=1$ known from γ_{ϕ}
- $Q=2$ known from crossover exponent
- Six-loop beta-functions for general scalar theory
- "Dummy fields" method provides anomalous dimensions for the $Q=3$ and $Q=4$ cases

General form of the result

- Anomalous dimensions of operators ϕ^{Q} are polynomial in g, Q, N

$$
\gamma_{Q}=Q \sum_{l=1}^{\infty} g^{l} \sum_{r=0}^{l} Q^{r} \sum_{s=0}^{l-1} N^{s} \gamma_{l, r, s}
$$

- Critical dimension, due to specific form of the $O(N)$ fixed point $g^{*}, \beta\left(g^{*}\right)=0$

$$
\Delta_{Q}=Q(1-\varepsilon)+\gamma_{Q}\left(g^{*}\right)=Q(1-\varepsilon)+\sum_{l=1}^{\infty} \varepsilon^{l} \sum_{k=1}^{2 l-1} \frac{P_{k}(Q)}{[N+8]^{k}}=Q(1-\varepsilon)+\sum_{l=1}^{\infty} \varepsilon^{l} \sum_{k=1}^{l+1} Q^{k} f_{k}(N)
$$

- At L-loop order we need $L+1$ independent predictions to fix all $f_{k}(N)$

Fixed Q results

- For $Q=1,2,3,4$ anomalous dimensions derived from general scalar theory six-loop result, e.g. $\lambda_{a b c d} \rightarrow \frac{g}{3}\left(\delta_{a b} \delta_{c d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right)+d_{a b c d}, d_{a b c a}=0$
- With additional two terms of $1 / Q$ expansion enough to fix general Q result at five loops
- At six loops need more input \rightarrow six-loop calculation of $\gamma_{Q=5}$
- Calculated from renormalization constant for five-point function with $O_{i_{1} i_{2} i_{3} i_{4} i_{5}}$ insertion
- Z_{5} from $\mathscr{K} \mathscr{R}^{\prime}$ applied to individual diagrams - possible generalisation beyond $O(N)$

$$
Z_{\phi}^{5} Z_{5}=1-\sum_{i} \mathscr{K} \mathscr{R}^{\prime} G_{i}
$$

- Anomalous dimension checked to be free of poles

$$
\gamma_{Q=5}=-\frac{\partial \log Z_{5}}{\partial \log \mu}=-\beta \frac{\partial \log Z_{5}}{\partial g}
$$

Calculation details

- We use $\mathscr{K} \mathscr{R}^{\prime}$ operation as the main tool to extract each diagram contribution to Z_{Q}

$$
\mathscr{K} \mathscr{R}^{\prime} G=\mathscr{K} G+\sum_{\{\gamma\}} \mathscr{K}\left[\prod_{\gamma_{i} \in\{\gamma\}}\left(-\mathscr{K} \mathscr{R}^{\prime} \gamma_{i}\right) * G /\{\gamma\}\right]
$$

- G is origanal diagram, $\mathscr{K} G$ its $\mathscr{O}(1 / \varepsilon)$ part
- γ_{i} are UV subgraphs, $\mathscr{K} \mathscr{R}^{\prime} \gamma_{i}$ is known from lower-loop calculations
- $G /\{\gamma\}$ is a co-graph after shrinking all γ_{i}, with the same momenta routing as G
- Results for $\mathscr{K} \mathscr{R}^{\prime} \gamma_{i}$ calculated in the bottom-up way from lower-loop order
- All integrals,but one entering $\mathscr{K} G$ and $G /\{\gamma\}$ are calculated with IR safe non-exceptional external momentum routing with HyperlogProcedures
- UV subgraph identification for $\mathscr{K} \mathscr{R}^{\prime}$ operation implemented in private C++ code
- Single diagram with exceptional external momentum routing calculated with $\mathscr{K}_{\mathscr{R}}{ }^{*}$ operation

Classification of diagrams

- Factorizable, loop order reduced $\mathscr{K} \mathscr{R}^{\prime}(\Gamma)=\mathscr{K}^{\prime}\left(\gamma_{1}\right) \cdot \mathscr{K} \mathscr{R}^{\prime}\left(\gamma_{2}\right)$

- Non-factorizable:

3

- Only diagrams similar to (I) need special treatment
- Diagrams (2),(3),(4) known from six-loop ϕ^{4} theory renormalization

IR operation for diagram with exceptional routing

$\mathscr{K}_{r_{2}}$
$\mathscr{K}_{\mathscr{R}^{\prime}} \underbrace{(\underbrace{C l}_{\Gamma_{5}=0}}_{\gamma_{5}}$

Anomalous dimension ansatz for arbitrary Q

$$
\begin{aligned}
& \gamma_{Q}^{6 \text {-loop }}=Q\left(\gamma_{6,0,0}+N \gamma_{6,0,1}+N^{2} \gamma_{6,0,2}+N^{3} \gamma_{6,0,3}+N^{4} \gamma_{6,0,4}+N^{5} \gamma_{6,0,5}\right) \\
& +Q^{2}\left(\gamma_{6,1,0}+N \gamma_{6,1,1}+N^{2} \gamma_{6,1,2}+N^{3} \gamma_{6,1,3}+N^{4} \gamma_{6,1,4}+N^{5} r_{6,1,5}\right. \\
& +Q^{3}\left(\gamma_{6,2,0}+N \gamma_{6,2,1}+N^{2} \gamma_{6,2,2}+N^{3} \gamma_{6,2,3}+N^{4} \gamma_{6,2,4}\right) \\
& +Q^{4}\left(\gamma_{6,3,0}+N \gamma_{6,3,1}+N^{2} \gamma_{6,3,2}+N^{3} \gamma_{6,3,3}\right) \\
& +Q^{5}\left(\gamma_{6,4,0}+N \gamma_{6,4,1}+N^{2} \gamma_{6,4,2}\right) \\
& +Q^{6}\left(\gamma_{6,5,0}+N \gamma_{6,5,1}\right) \\
& +Q^{7} \begin{array}{|}
\hline \\
\hline 6,6,0 \\
\hline
\end{array} \\
& \begin{array}{lll}
Q \rightarrow \infty & N \rightarrow \infty & Q \rightarrow \infty, N \rightarrow \infty \\
\hline
\end{array}
\end{aligned}
$$

Critical dimension and checks

- Substituting IR fixed point $g^{*} \simeq \frac{6 \varepsilon}{N+8}$ in $d=4-2 \varepsilon$ into γ_{Q} we obtain critical dimension Δ_{Q}

$$
\Delta_{Q}=Q(1-\varepsilon)+\gamma_{Q}\left(g^{*}\right)
$$

- Reexpanding Δ_{Q} in $1 / N$ with $J=Q / N$ fixed

$$
\frac{\Delta_{Q}}{Q} \simeq 1-\epsilon+\sum_{l=1}^{\infty}(6 \epsilon)^{l} \sum_{k=1}^{l} J^{k} \gamma_{l, k, l-k}+\mathscr{O}\left(\frac{1}{N}\right)
$$

- Compare with predictions for $h_{i}(d)$, e.g.: $h_{2}(d)=-\frac{2^{d-3} d \sin \frac{\pi d}{2} \Gamma\left(\frac{d-1}{2}\right)}{\pi^{3 / 2} \Gamma\left(\frac{d}{2}+1\right)}$

$$
\frac{\Delta_{Q}}{Q}=\left(\frac{d}{2}-1\right)+h_{2}(d) J+h_{3}(d) J^{2}+h_{4}(d) J^{3}+\ldots
$$

Conclusion

- Calculated six-loop anomalous dimensoin of the ϕ^{5} operator
- Derived six-loop expression for ϕ^{Q} operator anomalous dimension with arbitrary Q
- Result checked with available $1 / N$ and fixed $J=Q / N$ expansions
- Calculated individual diagrams $\mathscr{K} \mathscr{R}^{\prime}$ results allow extenstion to more general theories

Thank you for attention!

