Large charge expansion meets epsilon expansion at six loops

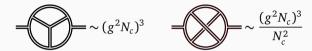
Andrey Pikelner

BLTP JINR

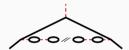
in collaboration with A.Bednyakov

Looking for QFT simplifications

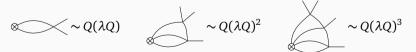
• Expansion in $1/N_c$, non-planar diagrams suppressed



• Bubble chains contributions dominate in $n_f \to \infty$ limit



• Large charge expansion in powers of 1/Q for diagrams with ϕ^Q operator insertion



Available predictions

- Large charge expansion, exact in $(g \cdot Q)$ 't Hooft coupling
 - O(2) model, leading Δ_{-1} and subleading Δ_{0}

[Badel,Cuomo,Monin,Rattazzi'19]

$$\Delta_{\phi^n} = \sum_{k=-1}^{\infty} \lambda^k \Delta_k(\lambda n)$$

- O(N) model, leading Δ_{-1} and subleading Δ_{0} [Antipin, Bersini, Sannino, Wang, Zhang'20]

$$\Delta_Q(N) = \sum_{k=-1}^{\infty} \lambda^k \Delta_k(g \cdot Q, N)$$

ullet Critical dimension of operator ϕ^Q in 1/N expansion

[Derkachov, Manashov'98]

$$\Delta_{Q}(\varepsilon) = \frac{u_{1}(Q, \varepsilon)}{N} + \frac{u_{2}(Q, \varepsilon)}{N^{2}} + \mathcal{O}\left(\frac{1}{N^{3}}\right)$$

- ε -expansion results
 - Four-loop calculation of the leading $Q \to \infty$ part
 - Direct five-loop calculation of $\gamma_1 \dots \gamma_6$ and fit for γ_Q

[Jack, Jones'21]

[Jin,Li'22]

Specifying the model

• We consider O(N) symmetric ϕ^4 theory, with N component field ϕ_i , i=1...N

$$\mathscr{L} = \frac{1}{2} \partial_{\mu} \phi_i \partial^{\mu} \phi_i + \frac{g}{4!} (\vec{\phi} \cdot \vec{\phi})^2$$

• Anomalous dimensions of the operator $O_{i_1...i_0}$, which is traceless fully symmetric with Q indices

$$\frac{\mathbf{O}_{i_1 i_2}}{\mathbf{O}_{i_1 i_2}} \equiv \phi_{i_1} \phi_{i_2} - \frac{1}{N} \delta_{i_1 i_2} \phi^2, \quad \frac{\mathbf{O}_{i_1 i_2 i_3}}{\mathbf{O}_{i_1 i_2 i_3}} \equiv \phi_{i_1} \phi_{i_2} \phi_{i_3} - \frac{1}{N+2} \phi^2 (\phi_{i_1} \delta_{i_2 i_3} + \phi_{i_2} \delta_{i_1 i_3} + \phi_{i_3} \delta_{i_1 i_2}), \quad \dots$$

- Six-loop O(N) theory renormalization
 - Q = 1 known from γ_{ϕ}
 - Q = 2 known from crossover exponent

[Kompaniets, Panzer'17]

[Kompaniets, Wiese'19]

Six-loop beta-functions for general scalar theory

[Bednyakov, Pikelner'21]

- "Dummy fields" method provides anomalous dimensions for the Q=3 and Q=4 cases

General form of the result

• Anomalous dimensions of operators ϕ^Q are polynomial in g, Q, N

$$\gamma_Q = Q \sum_{l=1}^{\infty} g^l \sum_{r=0}^{l} Q^r \sum_{s=0}^{l-1} N^s \gamma_{l,r,s}$$

• Critical dimension, due to specific form of the O(N) fixed point g^* , $\beta(g^*) = 0$

$$\Delta_{Q} = Q(1 - \varepsilon) + \gamma_{Q}(g^{*}) = Q(1 - \varepsilon) + \sum_{l=1}^{\infty} \varepsilon^{l} \sum_{k=1}^{2l-1} \frac{P_{k}(Q)}{[N+8]^{k}} = Q(1 - \varepsilon) + \sum_{l=1}^{\infty} \varepsilon^{l} \sum_{k=1}^{l+1} Q^{k} f_{k}(N)$$

• At L-loop order we need L+1 independent predictions to fix all $f_k(N)$

Fixed Q results

- For Q=1,2,3,4 anomalous dimensions derived from general scalar theory six-loop result, e.g. $\lambda_{abcd} \rightarrow \frac{g}{3}(\delta_{ab}\delta_{cd} + \delta_{ac}\delta_{bd} + \delta_{ad}\delta_{bc}) + d_{abcd}, \ d_{abca}=0$ [Bednyakov,Pikelner'21]
- With additional two terms of 1/Q expansion enough to fix general Q result at five loops
- At six loops need more input ightarrow six-loop calculation of $\gamma_{Q=5}$
- Z_5 from $\mathscr{K}\mathscr{R}'$ applied to individual diagrams possible generalisation beyond O(N)

$$Z_{\phi}^5 Z_5 = 1 - \sum_i \mathcal{K} \mathcal{R}' G_i$$

Anomalous dimension checked to be free of poles

$$\gamma_{Q=5} = -\frac{\partial \log Z_5}{\partial \log \mu} = -\beta \frac{\partial \log Z_5}{\partial g}$$

Calculation details

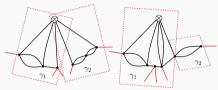
- We use $\mathscr{K}\mathscr{R}'$ operation as the main tool to extract each diagram contribution to Z_Q

$$\mathscr{K}\mathscr{R}'G = \mathscr{K}G + \sum_{\{\gamma\}} \mathscr{K} \Big[\prod_{\gamma_i \in \{\gamma\}} (-\mathscr{K}\mathscr{R}'\gamma_i) * G/\{\gamma\} \Big]$$

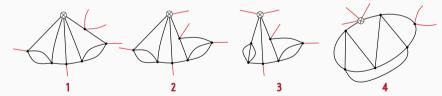
- G is origanal diagram, $\mathcal{K}G$ its $\mathcal{O}(1/\varepsilon)$ part
- γ_i are UV subgraphs, $\mathcal{KR}'\gamma_i$ is known from lower-loop calculations
- $G/\{\gamma\}$ is a co-graph after shrinking all γ_i , with the same momenta routing as G
- Results for $\mathcal{K}\mathcal{R}'\gamma_i$ calculated in the bottom-up way from lower-loop order
- All integrals, but one entering $\mathcal{K}G$ and $G/\{\gamma\}$ are calculated with IR safe non-exceptional external momentum routing with HyperlogProcedures [Schnetz'2022]
- UV subgraph identification for $\mathscr{K}\mathscr{R}'$ operation implemented in private C++ code
- Single diagram with exceptional external momentum routing calculated with $\mathscr{K}\mathscr{R}^*$ operation

Classification of diagrams

Factorizable, loop order reduced $\mathcal{KR}'(\Gamma) = \mathcal{KR}'(\gamma_1) \cdot \mathcal{KR}'(\gamma_2)$



Non-factorizable:



- Only diagrams similar to (1) need special treatment
- Diagrams (2),(3),(4) known from six-loop ϕ^4 theory renormalization [Kompaniets, Panzer'17]

IR operation for diagram with exceptional routing

Anomalous dimension ansatz for arbitrary Q

$$\begin{split} \gamma_Q^{6-\text{loop}} &= \mathcal{Q}(\gamma_{6,0,0} + N\gamma_{6,0,1} + N^2\gamma_{6,0,2} + N^3\gamma_{6,0,3} + N^4 \boxed{\gamma_{6,0,4}} + N^5 \boxed{\gamma_{6,0,5}}) \\ &+ \mathcal{Q}^2(\gamma_{6,1,0} + N\gamma_{6,1,1} + N^2\gamma_{6,1,2} + N^3\gamma_{6,1,3} + N^4 \boxed{\gamma_{6,1,4}} + N^5 \boxed{\gamma_{6,1,5}} \\ &+ \mathcal{Q}^3(\gamma_{6,2,0} + N\gamma_{6,2,1} + N^2\gamma_{6,2,2} + N^3\gamma_{6,2,3} + N^4 \boxed{\gamma_{6,2,4}}) \\ &+ \mathcal{Q}^4(\gamma_{6,3,0} + N\gamma_{6,3,1} + N^2\gamma_{6,3,2} + N^3 \boxed{\gamma_{6,3,3}}) \\ &+ \mathcal{Q}^5(\gamma_{6,4,0} + N\gamma_{6,4,1} + N^2 \boxed{\gamma_{6,4,2}}) \\ &+ \mathcal{Q}^6(\boxed{\gamma_{6,5,0}} + N \boxed{\gamma_{6,5,1}}) \\ &+ \mathcal{Q}^7 \boxed{\gamma_{6,6,0}} \end{split}$$

Critical dimension and checks

• Substituting IR fixed point $g^* \simeq \frac{6\varepsilon}{N+8}$ in $d=4-2\varepsilon$ into γ_O we obtain critical dimension Δ_O

$$\Delta_Q = Q(1 - \varepsilon) + \gamma_Q(g^*)$$

Reexpanding Δ_0 in 1/N with J = Q/N fixed

$$\frac{\Delta_Q}{Q} \simeq 1 - \epsilon + \sum_{l=1}^{\infty} (6\epsilon)^l \sum_{k=1}^l J^k \gamma_{l,k,l-k} + \mathcal{O}\left(\frac{1}{N}\right)$$

• Compare with predictions for $h_i(d)$, e.g.: $h_2(d) = -\frac{2^{a-3}d\sin\frac{\pi a}{2}\Gamma(\frac{a-1}{2})}{\pi^{3/2}\Gamma(\frac{d}{2}+1)}$ [Giombi, Hyman'21]

$$\frac{\Delta_Q}{Q} = \left(\frac{d}{2} - 1\right) + h_2(d)J + h_3(d)J^2 + h_4(d)J^3 + \dots$$

Conclusion

- Calculated six-loop anomalous dimensoin of the ϕ^5 operator
- ullet Derived six-loop expression for ϕ^Q operator anomalous dimension with arbitrary Q
- Result checked with available 1/N and fixed J=Q/N expansions
- Calculated individual diagrams $\mathcal{H}\mathcal{R}'$ results allow extenstion to more general theories

Thank you for attention!