

A. Babic, S. Kovalenko, M. Krivoruchenko, F. Simkovic

High-scale Seesaw I

High-scale Seesaw II

$$m_{
m v} \sim rac{\langle H
angle^2}{M_{\Delta}^2} \mu$$

 $M_R \sim 10^{12}\,{\rm GeV}$

High-scale Seesaw III

Inverse Seesaw

$$m_{\nu} \sim m_D (M^T)^{-1} \ \mu \ M^{-1} \ m_D$$

The TeV scale masses for sufficiently small μ

Low-scale Seesaw

Loop Seesaw

Internal particle masses in the TeV ballpark

$$O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \ \overline{L_{\alpha}^C} \ L_{\beta} \ H \ (\overline{Q} \ u_R)$$

$$O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \ \overline{\nu_{\alpha}^C} \ \nu_{\beta} \ H \ (\overline{u_L} u_R) + \dots$$

$$O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \ \overline{\nu_{\alpha}^C} \ \nu_{\beta} \ H \ (\overline{u_L} u_R) + \dots$$

$$O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \ \overline{\nu_{\alpha}^C} \ \nu_{\beta} \ H \ (\overline{u_L} u_R) + \dots$$

$$m_{\nu} \sim \langle H \rangle \; \frac{\langle \overline{q_L} \; q_R \rangle}{\Lambda^3}$$

$$O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \ \overline{L_{\alpha}^C} \ L_{\beta} \ H \ (\overline{Q} \ u_R)$$

$$O_W = \frac{g_{\alpha\beta}^W}{\Lambda} \ \overline{L_{\alpha}^C} \ L_{\beta} \ H \ H$$

Phenomenological relevance of $O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \overline{L_{\alpha}^C} L_{\beta} H(\overline{Q} u_R)$

$$O_W = \frac{g_{\alpha\beta}^W}{\Lambda} \ \overline{L_{\alpha}^C} \ L_{\beta} \ H \ H$$

$$O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \ \overline{L_{\alpha}^C} \ L_{\beta} \ H \ (\overline{Q} \ u_R)$$

Symmetry **G** forbidding O_W while allowing O_7

Properties:

- *H* is **G**-singlet G-symmetry is unbroken down to the chiral symmetry breaking scale
- $(\overline{L^C} L)$ is G-non-singlet
- $(\bar{Q} u_R)$ is **G**-non-singlet

$$O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \ \overline{L_{\alpha}^C} \ L_{\beta} \ H \ (\overline{Q} \ u_R)$$

Symmetry **G** forbidding O_W

$$O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \ \overline{L_{\alpha}^C} \ L_{\beta} \ H \ (\overline{Q} \ u_R)$$

Symmetry **G** forbidding O_W

$$O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \ \overline{L_{\alpha}^C} \ L_{\beta} \ H \ (\overline{Q} \ u_R)$$

Symmetry **G** forbidding O_W

 $m_u^{latt} = 2.78 \pm 0.19 \; \mathrm{MeV}$

and Gell-Mann–Oakes–Renner relation for pion masses requiring $m_{u,d} \neq 0$

 $m_d \neq 0$, $m_s \neq 0$

 $m_d \neq 0, m_s \neq 0$

 $m_u^{inst} = 2.33 \pm 0.20$ MeV

[N. Kitazawa and Y. Sakai, Int. J. Mod. Phys. A 33, 1850017 (2018)]

$$O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \ \overline{L_{\alpha}^C} \ L_{\beta} \ H \ (\overline{Q} \ u_R)$$

Symmetry **G** forbidding O_W

Way out: QCD instanton $m_u^{inst} = 2.33 \pm 0.20$ MeV

Softly-broken O7-protecting symmetry G

Softly-broken O7-protecting symmetry G

 $F_{L,R}(1,6;0) \quad \phi(1,5;1/3) \quad \eta(1,6;4/3)$

$$O_7 = \frac{g_{\alpha\beta}}{\Lambda^3} \ \overline{L_{\alpha}^C} \ L_{\beta} \ H \ (\overline{Q} \ u_R)$$
Phenomenology

Applying combined analysis of neutrino oscillation data and $0\nu\beta\beta - Decay$ half-life lower limit

Model predicts: Normal Ordering of neutrino masses with

 $2.65 \text{ meV} \le m_0 = m_1 \le 6.84 \text{ meV}$ $9.0 \text{ meV} \le m_2 \le 11.2 \text{ meV}$ $49.8 \text{ meV} \le m_3 \le 50.8 \text{ meV}$

□ Small neutrino mass induced by a combined effect of the Chiral Symmetry breaking and Tev scale-BSM physics

□ Small neutrino mass induced by a combined effect of the Chiral Symmetry breaking and Tev scale-BSM physics

□ Predicts the Normal ordering of the neutrino mass spectrum

□ Small neutrino mass induced by a combined effect of the Chiral Symmetry breaking and Tev scale-BSM physics

□ Predicts the Normal ordering of the neutrino mass spectrum

□ Motivates the smallness of the u-quark mass (light neutrino → light u-quark)

□ Small neutrino mass induced by a combined effect of the Chiral Symmetry breaking and Tev scale-BSM physics

Predicts the Normal ordering of the neutrino mass spectrum

□ Motivates the smallness of the u-quark mass (light neutrino → light u-quark)

Thank you !

BSM models	Neutrino Mass and Chiral Symmetry Breaking	
QCD Lagrangian:	$\mathcal{L} = \overline{q}_{\mathrm{L}} i ot\!\!\! D q_{\mathrm{L}} + \overline{q}_{\mathrm{R}} i ot\!\!\! D q_{\mathrm{R}} + \mathcal{L}_{\mathrm{gluons}}$	$q = \left[egin{array}{c} u \ d \end{array} ight]$
Chiral symmetry:	$SU(2)_L \times SU(2)_R$	
	$q_{L,R} = U_{L,R} \; q_{L,R}$	

There is no explicit Ch symmetry of the hadronic spectrum

Ch symmetry must be broken spontaneously

Chiral Symmetry

QCD Lagrangian:	$\mathcal{L} = \overline{q}_{ m L} i ot\!\! D q_{ m L} + \overline{q}_{ m L}$	$ar{q}_{\mathrm{R}}i ot\!\!\!Dq_{\mathrm{R}} + \mathcal{L}_{\mathrm{gluons}}$	$q = \left[egin{array}{c} u \ d \end{array} ight]$	
Chiral symmetry:	$SU(2)_{ m L} imes SU(2)_{ m R}$	$L imes U(1)_V imes U(1)_A$		
	$q_{L,R} = U_{L,R} \; q_{L,R}$	$q_{L,R} = e^{i\theta_V} q_{L,R}$	$q_{L/R} = e^{\pm i\theta_A} q_{L/R}$	2
Non-perturbative QCD effe	ects	Quark condensate	$\langle \overline{q_L} q_R \rangle \neq 0$	
Spontaneous Breaking of Chiral symmetry	$SU(2)_L \times SU(2)_R - \frac{\langle \overline{q} \rangle}{2}$	$\xrightarrow{\overline{f_L} q_R} SU(2)_I$	3 Goldstones:	π^\pm , π^0
Soft breaking of Ch Symme	etry: $m_q \ \overline{q_L} q$	<i>R</i> current quark n	nasses	3 Pseudo-Goldstones:

Non-perturbative QCD effects

Quark condensate

 $\langle \overline{q_L} q_R \rangle \neq 0$

BSM models	Neutrino Mass and Chiral Symmetry Breaking		
QCD Lagrangian:	$\mathcal{L} = \overline{q}_{\mathrm{L}} i ot\!\!\! D q_{\mathrm{L}} + \overline{q}_{\mathrm{R}} i ot\!\!\! D q_{\mathrm{R}} + \mathcal{L}_{\mathrm{gluons}}$	$q = egin{bmatrix} u \ d \end{bmatrix}$	FOR SUBATOMIC PHYSICS AT HIGH-ENERGY FRONTIER SAPHIR
Chiral symmetry:	$SU(2)_L \times SU(2)_R$		
	$q_{L,R} = U_{L,R} \; q_{L,R}$		

Spontaneous Breaking
$$SU(2)_L \times SU(2)_R \xrightarrow{\langle \overline{q_L} q_R \rangle} SU(2)_I$$
 3 Goldstones: π^{\pm}, π^0 $m_{\pi} = 0$ of Chiral symmetry

BSM models	Neutrino Mass and Chiral Symmetry Breaking
QCD Lagrangian:	$\mathcal{L} = \overline{q}_{\mathrm{L}} i ot\!\!\!\! D q_{\mathrm{L}} + \overline{q}_{\mathrm{R}} i ot\!\!\!\! D q_{\mathrm{R}} + \mathcal{L}_{\mathrm{gluons}} \qquad $
Chiral symmetry:	$SU(2)_L \times SU(2)_R$
	$q_{L,R} = U_{L,R} \; q_{L,R}$
Spontaneous Breaking of Chiral symmetry	$SU(2)_L \times SU(2)_R \xrightarrow{\langle \overline{q_L} q_R \rangle} SU(2)_I$ 3 Pseudo-Goldstones: π^{\pm}, π^0 $m_{\pi} \neq 0$
Non-perturbative QCD effects Quark condensate $\langle \overline{q_L} q_R \rangle \neq 0$	
Soft breaking	of Ch Symmetry: $m_q \ \overline{q_L} q_R$ current quark masses