Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

> Raghavan Rangarajan Physical Research Laboratory Ahmedabad, India

> > with R. Arya, N. Mahajan, N. Sahu, A. Sarkar

OUTLINE

- OUR UNIVERSE PRESENT AND PAST
- MATTER-ANTIMATTER ASYMMETRY OF THE UNIV
- INFLATION AND REHEATING
- GRAVITINO PROBLEM AND $\mathsf{T}_{\mathsf{REH}}$

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

RESOLVING THE GRAVITINO PROBLEM
 CONCLUSION

OUR UNIVERSE

OBSERVATIONS + GENERAL THEORY OF RELATIVITY

PRESENT AND PAST

FUTURE ?

THE PRESENT

14 b yr

COMPOSITION – PHOTONS AND NEUTRINOS LUMINOUS MATTER (p,n,e) DARK MATTER DARK ENERGY

EXPANSION OF OUR UNIVERSE

- ALL DISTANT GALAXIES ARE MOVING AWAY FROM EACH OTHER (HUBBLE 1929)
- NOT BECAUSE OF INTRINSIC VELOCITIES BUT BECAUSE SPACE IS EXPANDING

GENERAL RELATIVITY (SPACE INFLUENCED BY MATTER IN IT, DYNAMIC)

EXPANSION OF OUR UNIVERSE

ISOTROPIC AND HOMOGENEOUS

Rate of expansion \propto (ave. energy density)^{1/2}

Evolution and expansion also depends on the composition of the universe (rel or nonrel, ..)

WHATEVER DOMINATES DETERMINES
 THE NATURE OF EVOLUTION

COMPOSITION OF OUR UNIVERSE

- PHOTONS AND NEUTRINOS NEGLIGIBLE
- PROTONS, NEUTRONS AND ELECTRONS – 5%

• DARK MATTER – 25%

DARK ENERGY – 70% ACCELERATING

COMPOSITION OF OUR UNIVERSE

- PHOTONS AND NEUTRINOS NEGLIGIBLE (First 70 k)
- PROTONS, NEUTRONS AND ELECTRONS – 5%

• DARK MATTER – 25% (70 k – 9 b yr)

DARK ENERGY – 70% ACCELERATING

PAST

PRESENT -- 14 b yr, COMPOSITION, EXPANDING

+ GENERAL RELATIVITY

PAST – DENSE AND HOT, EXPANDING FAST

GO BACK IN TIME, HOTTER, PARTICLES MORE ENERGETIC, IN ELEMENTARY FORMS

GALAXIES AND STARS -- TODAY ATOMS \rightarrow NUCLEI \rightarrow FUNDAMENTAL PARTICLES

A BRIEF HISTORY OF OUR UNIVERSE

- First second hot primordial gas of electrons,... photons, quarks/protons, neutrons, dark matter, ...
- 1 s 3 min light nuclei (helium, lithium, ..)
- 400,000 years Atoms form, CMBR
- 300 million years First stars form
- 1 billion years First galaxies form
- 9 billion years Solar system formed, DE
- 14 billion years Today

UNIVERSE AS A PARTICLE PHYSICS LABORATORY

PARTICLE COSMOLOGY

THEN AND NOW STUDY REACTIONS, PREDICT TODAY

CAN APPLY NEW PARTICLE PHYSICS THEORIES IN THE FIRST MICROSECOND

ENERGY OF PARTICLES IN THE FIRST MICROSECOND IS HIGHER

CURRENT COLLIDERS E ~ TeV, BSM > 1 TeV

THE FIRST SECOND

• 10^{-44} s – Planck time (E ~ 10^{19} GeV) [Q Gravity]

Grand Unified Theory

 10⁻³⁸ s – GUT Phase Transition (E ~ 10¹⁶ GeV, T ~ 10²⁹ K)

Standard Model [q, I, H, GB] /Modified SM

- 10⁻¹¹ s Electroweak Phase Transition (E ~ 100 GeV, T ~ 10¹⁵ K)
- $10^{-6} \text{ s} \text{quarks} \rightarrow \text{protons}$, neutrons (E ~ 1 GeV, T ~ 10^{13} K)
- 1 s Primordial Nucleosynthesis begins
 (E ~ 1 MeV, T ~ 10¹⁰ K)

THE FIRST SECOND

• 10^{-44} s – Planck time (E ~ 10^{19} GeV) [Q Gravity]

Grand Unified Theory

 10⁻³⁸ s – GUT Phase Transition (E ~ 10¹⁶ GeV, T ~ 10²⁹ K)

Standard Model [q, I, H, GB] /Modified SM

- 10⁻¹¹ s Electroweak Phase Transition (E ~ 100 GeV, T ~ 10¹⁵ K)
- $10^{-6} \text{ s} \text{quarks} \rightarrow \text{protons}$, neutrons (E ~ 1 GeV, T ~ 10^{13} K)
- 1 s Primordial Nucleosynthesis begins
 (E ~ 1 MeV, T ~ 10¹⁰ K)

OUTLINE

- OUR UNIVERSE PRESENT AND PAST
- MATTER-ANTIMATTER ASYMMETRY OF THE UNIV
- INFLATION AND REHEATING
- GRAVITINO PROBLEM AND T_{REH}

REHEATING, GRAVITINOS AND THE M-A ASYMM

RESOLVING THE GRAVITINO PROBLEM
 CONCLUSION

MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE

- SOLAR SYSTEM PROBES, INTERACTION OF SOLAR WIND WITH PLANETS
- MILKY WAY COSMIC RAYS
- CLUSTER (20 Mpc) GALACTIC COLLISIONS (1 Mpc = 3 x 10⁶ lt-yr) INTERGALACTIC HOT PLASMA
- UP TO 1000 Mpc COSMIC DIFFUSE GAMMA RAY SPECTRUM
 (ANNIHILATIONS AT BOUNDARY FROM z=1000 TO 20 – 380,000 YR TO 100 MILLION YR)
 (Cohen, de Rujula, Glashow)¹⁶

MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE

- ANTIMATTER RULED OUT TILL d~1000 Mpc
- SIZE OF OBSERVABLE UNIVERSE ~ 14000 Mpc

 $(1 \text{ Mpc} = 3 \times 10^{19} \text{ km} = 3 \times 10^{6} \text{ It-yr})$

MATTER-ANTIMATTER ASYMMETRY OF THE UNIV

HOW GENERATE ASYMMETRY?

- EARLY TIMES (t << 1 s = PRIM. NUCL.) EQUAL AMOUNTS OF MATTER AND ANTIMATTER
- WHERE DID THE ANTIMATTER GO? WHY THIS ASYMMETRY TODAY?
- DISEQUILIBRIUM IN THE EARLY UNIVERSE 100 M + 100 $A \rightarrow$ 103 M + 101 $A \rightarrow$ 2 M

 $X \to M$ $X \to A$

 $\rm r_M > \rm r_A$, GET MORE MATTER THAN ANTIMATTER

MATTER-ANTIMATTER ASYMMETRY

- X = GUT (GRAND UNIFIED THEORY) BOSONS – GUT BARYOGENESIS MASS ($M_x \sim 10^{16}$ GeV)
- X = HEAVY NEUTRINOS - LEPTOGENESIS MODELS MASS ($M_N \sim 10^{10}$ GeV)

MASS EXPRESSED AS MASS ENERGY M $\rm c^2$

1 GeV = PROTON MASS ~ 10⁻²⁷ kg

BEYOND STANDARD MODEL PARTICLES

MATTER-ANTIMATTER ASYMMETRY

WHEREFROM

- GUT BOSONS ($M_X \sim 10^{16} \text{ GeV}$)
- HEAVY NEUTRINOS ($M_N \sim 10^{10} \text{ GeV}$) ?

1 GeV = PROTON MASS

MATTER-ANTIMATTER ASYMMETRY

WHEREFROM

- GUT BOSONS ($M_X \sim 10^{16} \text{ GeV}$)
- HEAVY NEUTRINOS $(M_N \sim 10^{10} \text{ GeV})$?

1 GeV = PROTON MASS

In the hot early Universe when temperatures were very high $(k_B T > M)$ $(k_B = 1)$

OUTLINE

- OUR UNIVERSE PRESENT AND PAST
- MATTER-ANTIMATTER ASYMMETRY OF THE UNIV
- INFLATION AND REHEATING
- GRAVITINO PROBLEM AND T_{REH}

REHEATING, GRAVITINOS AND THE M-A ASYMM

RESOLVING THE GRAVITINO PROBLEM
 CONCLUSION

INFLATION

PERIOD OF ACCELERATED EXPANSION IN THE EARLY UNIVERSE (t ~ 10⁻³⁸ s or later)

HOW AND WHY?

INFLATION

EARLY UNIVERSE: RADIATION + SCALAR FIELD ϕ

RAD DOMINATE, UNIV EVOLVES ACCORDINGLY

ENERGY DENSITY OF RADIATION DECREASES ENERGY DENSITY OF $\pmb{\phi}$ is $\dot{\phi}^2/2 + V(\phi) \approx V(\phi)$

SLOWLY CHANGING ~ CONSTANT

WHEN ϕ DOMINATES, DETERMINES EVOL OF UNIV

DURING INFLATION, $V_f \sim 10^{90} V_i$ (IN 10⁻³⁶ s !!)

H_I IS THE HUBBLE PARAMETER

DURING INFLATION, $V(\Phi) \sim \text{CONST}$, $R \sim \exp(H_1 t)$

DURING RADIATION DOMINATED ERA , R ~ $t^{1/2}$

EINSTEIN'S EQN GIVES R(t) FOR RAD/INFLATON

IN AN EXPANDING UNIVERSE $d(t) \sim d_1 R(t)$

INFLATION

WHY?

HORIZON PROBLEM -- ISOTROPY OF CMBR

INFLATION AND REHEATING

DURING INFLATION, $V_f \sim 10^{90} V_i$

n OF ALL SPECIES $\rightarrow 0$. COLD

AFTER SOME TIME (10⁻³⁶s) THE INFLATON FIELD OSCILLATES AND DECAYS

INFLATON DECAY PRODUCTS THERMALISE, T_{reh} THERMAL BATH HAS q, I, h, dm, BSM INCLUDING GUT PARTICLES AND HEAVY NEUTRINOS REHEATING

THEREAFTER, ONCE AGAIN RAD DOMINATED

WHY BELIEVE?

CMBR DATA CLEARLY INDICATES THAT SOME EVENT LIKE INFLATION DID HAPPEN

INFLATION PREDICTS SOME ANISOTROPY -- SEEN

(INFLATION ALSO PREDICTS PRIMORDIAL GRAVITATIONAL WAVES – NOT YET DETECTED)

OUTLINE

- OUR UNIVERSE PRESENT AND PAST
- MATTER-ANTIMATTER ASYMMETRY OF THE UNIV
- INFLATION AND REHEATING
- GRAVITINO PROBLEM AND T_{REH}

REHEATING, GRAVITINOS AND THE M-A ASYMM

RESOLVING THE GRAVITINO PROBLEM
 CONCLUSION

GRAVITINOS

 \tilde{G} = SUPERSYMMETRIC PARTNER OF THE GRAVITON

SUPERSYMMETRY

- EXTENSION OF THE STANDARD MODEL (GAUGE HIERARCHY)
- SUPERPARTNERS: FERMION BOSON

PHOTON – PHOTINO, ELECTRON – SELECTRON, QUARKS – SQUARKS

(EQUAL m, IF SUSY)

GRAVITON – GRAVITINO (SUPERGRAVITY)

CAVEAT: NO SUSY PARTICLE SEEN YET, LHC ?

GRAVITINOS

 $\tilde{G} =$ SUPERSYMMETRIC PARTNER OF THE GRAVITON

PRODUCED AFTER INFLATION $t \sim 10^{-38} \,\mathrm{s} \,(m_{\tilde{G}} : \mathrm{eV} - \mathrm{TeV})$

COSMOLOGICAL CONSEQUENCES (m, n)

- STABLE : AFFECTS EXPANSION RATE, $\rho_{\tilde{G}} > \rho_c$ (L/H)
- UNSTABLE : AFFECT EXPANSION RATE PRIOR TO DECAY

DECAY PRODUCTS $\rho > \rho_c$

DESTROY LIGHT ELEMENTS ${}^{4}He$, ${}^{3}He$, D (NUCLEOSYNTHESIS)

GRAVITINO PROBLEM(S)

GRAVITINOS

 $\tilde{G} =$ SUPERSYMMETRIC PARTNER OF THE GRAVITON

PRODUCED AFTER INFLATION $t \sim 10^{-34} \,\mathrm{s} \,(m_{\tilde{G}} : \mathrm{eV} - \mathrm{TeV})$

COSMOLOGICAL CONSEQUENCES (m, n)

- STABLE : AFFECTS EXPANSION RATE, $\rho_{\tilde{G}} > \rho_c$ (L/H)
- UNSTABLE : AFFECT EXPANSION RATE PRIOR TO DECAY

DECAY PRODUCTS $\rho > \rho_c$

DESTROY LIGHT ELEMENTS ${}^{4}He$, ${}^{3}He$, D (NUCLEOSYNTHESIS)

GRAVITINO PROBLEM(S) => UPPER BOUND ON $ho_{ ilde{G}} \propto n_{ ilde{G}}$ 32

STANDARD PICTURE OF GRAVITINO PRODUCTION

→ RADIATION DOMINATED UNIV (Relativistic particles)

THERMAL SCATTERING $\rightarrow \tilde{G}$

(gluons, quarks, squarks, gluinos)

STANDARD PICTURE OF GRAVITINO PRODUCTION

STANDARD CALC OF GRAVITINO PRODUCTION

CALCULATE GRAVITINO PRODUCTION IN THE RAD DOM ERA

MAINLY PRODUCED AT THE BEGINNING OF THE RAD DOM ERA WHEN $T \sim T_{reh}$ and $n_{\tilde{G}} \propto T_{reh}$.

UPPER BOUND ON $n_{\tilde{G}}$

 \Rightarrow

UPPER BOUND ON T_{reh} OF 10^{6—9} GeV (MASS 100 GeV – 10 TeV)

 $k_{\rm B}$ T in GeV $k_{\rm B}$ =1 1 GeV =10¹³ K ³⁵

 THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION

1 GeV =10¹³ K

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

1 GeV = PROTON MASS

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO HAVE ENOUGH HEAVY X IN THE RADIATION DOMINATED UNIV AFTER REHEATING

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO HAVE ENOUGH HEAVY X IN THE RADIATION DOMINATED UNIV AFTER REHEATING

 $n_X \sim exp(-M c^2/k_BT)$

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO HAVE ENOUGH HEAVY X IN THE RADIATION DOMINATED UNIV AFTER REHEATING

LOW REHEAT TEMP TO SUPPRESS GRAVITINOS IS A PROBLEM FOR GUT BARYOGENESIS AND LEPTOGENESIS

OUTLINE

- OUR UNIVERSE PRESENT AND PAST
- MATTER-ANTIMATTER ASYMMETRY OF THE UNIV
- INFLATION AND REHEATING
- GRAVITINO PROBLEM AND T_{REH}

REHEATING, GRAVITINOS AND THE M-A ASYMM

• RESOLVING THE GRAVITINO PROBLEM

WE FOCUS ON LEPTOGENESIS MODELS – OUT OF EQM DECAY OF *N*.

POPULAR – RELATED TO LIGHT NEUTRINO MASSES

MASS $M_N \sim 10^{10} \text{ GeV}$

TWO SPECIES NEUTRINOS AND GRAVITINOS BOTH CREATED IN THE SAME THERMAL ENVIRONMENT -- RADIATION DOMINATED UNIVERSE AFTER REHEATING WANT N (M-A ASYMMETRY) BUT NOT \tilde{G} (DECAY)

OUR QUERY

IS IT POSSIBLE TO MAKE THEORIES WITH GRAVITINOS (SUPERSYMMETRY/SUPERGRAVITY)

CONSISTENT WITH MODELS OF LEPTOGENESIS INVOLVING HEAVY NEUTRINOS

IF YES, GOOD

IF NOT, EITHER ONE OF THESE PARTICLE PHYSICS IDEAS WILL HAVE TO BE DISCARDED

(ASSUMPTIONS)

SOLUTIONS

DETAILED VIEW OF REHEATING [RR, SAHU]

MODIFIED THERMALISATION DURING REHEATING DUE TO SUSY FLAT DIRECTIONS [RR, SARKAR]

NEW PROBLEMS

INCREASE $\,\widetilde{G}\,$ DUE TO SUSY FLAT DIRECTIONS/TEMP

[MAHAJAN, RR, SARKAR; ARYA, MAHAJAN, RR]

SOLUTION 2

DECREASE \tilde{G}

MODIFIED THERMALISATION DURING REHEATING DUE TO SUPERSYMMETRY FIELDS

STANDARD THERMALISATION DURING REHEATING

INFLATON DECAY THERMALISATION DURING REHEATING DUE TO ELASTIC AND INELASTIC SCATTERING

PROCESSES MEDIATED BY GAUGE BOSONS – PHOTONS (EM), GLUONS (STRONG), W, Z (WEAK)

 $q\bar{q} o q\bar{q}\gamma$ 48

STANDARD THERMALISATION

INFLATON DECAY AND REHEATING:

HEAVY GAUGE BOSONS

IN THE EARLY UNIVERSE A SUPERSYMMETRIC FIELD (AFFLECK-DINE FIELD) CAN GET A NON-ZERO EXPECTATION VALUE (CONDENSATE)

 $Z(\psi)$

SUSY FLAT DIR, NOT INFLATON

GIVES MASS TO GAUGE BOSONS

PHOTON, GLUONS, W, Z CAN BE 10¹³ TIMES HEAVIER THAN THE PROTON

MODIFIED THERMALISATION

PROCESSES MEDIATED BY GAUGE BOSONS – PHOTONS, GLUONS, W, Z SUPPRESSED

 $q\bar{q} \rightarrow q\bar{q}\gamma$

MODIFIED THERMALISATION

INFLATON DECAY AND REHEATING:

GRAVITINO SUPPRESSION

n_{\downarrow} DILUTE PLASMA

$$q + \bar{\tilde{q}} \to g + \tilde{G} \qquad q + \bar{q} \to \tilde{g} + \tilde{G} \qquad \tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$$

GRAVITINOS PRODUCED BY SCATTERING OF INFLATON DECAY PRODUCTS [n.n]

 $n_{\tilde{G}} \downarrow \downarrow$ ALLAHVERDI AND MAZUMDAR; RR AND A. SARKAR

LATER A-D FIELD DECAYS, GB MASSLESS, THERMAL. FINAL REHEAT TEMPERATURE LOW ⁵³

OBTAINING THE GRAVITINO ABUNDANCE

$$q + \bar{\tilde{q}} \to g + \tilde{G} \qquad q + \bar{q} \to \tilde{g} + \tilde{G} \qquad \tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$$

INTEGRATED BOLTZMANN EQUATION

NOW,
$$\dot{n}_{\tilde{G}} = -3Hn_{\tilde{G}} + \int d\Pi_1 \ d\Pi_2 \ f_1 \ f_2 \ W_{12}(s)$$

 $W_{12}(s) \propto \sigma_{CM}$

 $f_{1,2}$ particle distribution functions for incoming particles – appropriate non-thermal

RESULTS

SUPPRESSED GRAVITINO PRODUCTION DUE TO

A) DILUTE PLASMAB) PHASE SPACE SUPPRESSION

$$q + \bar{\tilde{q}} \to g + \tilde{G} \qquad q + \bar{q} \to \tilde{g} + \tilde{G} \qquad \tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$$

OUTGOING GLUON/GLUINO HEAVY

GRAVITINO PRODUCTION SHUTS OFF WHEN THE ENERGY OF INCOMING QUARKS/SQUARKS < $m_{g,\tilde{g}}$

RESULTS

SUPPRESSED GRAVITINO PRODUCTION

$$Y_{\tilde{G}} = 4 \times 10^{-18}, 10^{-20} < 10^{-14}$$

COMPLETE SHUT OFF

[RR, A. SARKAR]

N UT SUFFICIENT

CONCLUSION

- 1. POPULAR MODELS OF GENERATING THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE REQUIRE A LARGE REHEAT TEMPERATURE AFTER INFLATION
- 2. BUT THAT GENERATES TOO MANY GRAVITINOS IN THE UNIVERSE
- 3. COSMOLOGISTS ARE LOOKING FOR MECHANISMS TO ENHANCE NEUTRINO ABUNDANCE/SUPPRESS GRAVITINO ABUNDANCE

CONCLUSION

4.GRAVITINO ABUNDANCE GENERATED IN A NON-THERMAL UNIVERSE IN THE PRESENCE OF SUPERSYMMETRY FIELDS IS SUPPRESSED

SYMBIOSIS BETWEEN THE BIG AND THE SMALL

 USE COSMOLOGY TO CONSTRAIN PARTICLE PHYSICS THEORY –

SUPERSYMMETRY \rightarrow GRAVITINOS

 INVOKE PARTICLE PHYSICS THEORIES TO EXPLAIN COSMOLOGICAL PHENOMENA –

M-AM ASYMMETRY