Data-driven approximation of downward solar radiation flux based on all-sky optical imagery using machine learning models trained on DASIO dataset.

> Vasilisa Koshkina, Mikhail Krinitskiy, Nikita Anikin, Mikhail Borisov

Motivation

Flux estimation in literature:

- physics-based modeling (needs detailed physical properties of clouds and aerosols)
- parameterizations-based modeling (needs only standard cloud properties)

Motivation:

- cheaper downward shortwave (SW) radiation flux estimation
- investigation of flux dependence on structural characteristics of clouds

Goal:

Improve accuracy of existing parameterizations of downward SW radiation fluxes

Assumption:

An all-sky photo contains complete information about downward SW radiation

Originality:

Use machine learning (ML) models for approximating downward SW radiation flux

Equipment

radiometer KIPP&ZONEN CNR-1

cloud-camera «SAIL CLOUD V.2»

photo with mask

more than 7'000 €

less than 1'500 €

Pre-processing

"Bad" photo at <5 W/m²

Data

- over 2'000'000 all-sky photo from ocean surface:
 The Dataset of All-Sky Imagery over the Ocean (DASIO)¹
- resolution 1920*1920
- auto white balance
- auto brightness adjustment
- rare images considered outliers
- RGB-channels

Map of cruises of the research vessels

¹Krinitskiy et al. "On the Generalization Ability of Data-Driven Models in the Problem of Total Cloud Cover Retrieval." Remote Sensing. 2021; 13(2):326.

Target values distribution

Methods

- **Classic ML models** (applied to pre-processed data):
 - linear models: *Linear Regression*
 - ensemble models: *Random Forest* and *Gradient Boosting*

eatures
values
nce
sis

Methods

- End-to-end ML approach (applied directly to photo):
 - Convolutional Neural Network (CNN) with heavy images augmentation (brightness, gaussian noise)

Structure of CNN

Value mapping diagrams

9

Results

Model	RMSE, W/m ²
Linear Regression	84
Gradient Boosting	53.5
Random Forest	62.1
CNN	39.2
Parameterization	RMSE, W/m ²
Dobson-Smith	78.2 (38 - 116)
LVOAMKI ¹	61.9 (26 - 115)

¹Aleksandrova et al. "An improvement of parametrization of short-wave radiation at the sea surface on the basis of direct measurements in the Atlantic." Russian Meteorology and Hydrology, 2007. № 4 (32). c. 245–251.

Classic ML approach

End-to-end CNN approach

Conclusion

- One may estimate downward SW radiation flux directly using all-sky imagery of clouds
- Quality of **CNN** (RMSE = 39.2 W/m²) is better compared to existing parameterization LVOAMKI (RMSE = 61.9 W/m²);
- Convolutional Neural Networks are capable of estimating downward SW radiation flux based on clouds visible structure

Technical means

ΟΡΤυΝΑ

NVIDIA DGX Station V100