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Problem review
• Global warming increases temperature and changes local precipitation and wind patterns.

• Global circulation models (GCMs) – low resolution.

• Numerical weather prediction (NWP) on a global scale in GCMs – computationally expensive.

• Solution is downscaling.

• Downscaling approximates values obtaining high-resolution information about physical variables
from low-resolution modeling outputs.
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Downscaling methods

1) Dynamical downscaling:
• Low-resolution numerical modeling – entire area of interest;

• Low-resolution outputs – boundary conditions for high-resolution modeling;

• High-resolution modeling – in particular subareas of the modeling area.

2) Statistical downscaling:
• No numerical modeling;

• Functional relationship between low- and high-resolution data is approximated by training a
statistical model on dataset pairs;

• Computational efficiency – functional relationship is applied directly to low-resolution data;

• The downscaling quality can be lower than that obtained in dynamic downscaling;

• Widely used because of lower computational costs;

• Allows using non-linear machine-learning methods (e.g., artificial neural networks, ANN).
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Research purpose
High-resolution downscaling of surface wind speed in the North Atlantic region comparing
discriminative and generative neural networks based on RAS-NAAD* 40-year hindcast
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Fig. The modeling area from 10⁰ N to 80⁰N and from 90⁰W to 5⁰E

* Gavrikov A. et al. RASNAAD: 40-yr High-Resolution North Atlantic Atmospheric Hindcast for Multipurpose Applications (New Dataset for the Regional 

Mesoscale Studies in the Atmosphere and the Ocean) //Journal of Applied Meteorology and Climatology. – 2020. –V. 59. – №. 5. – P. 793-817.

Materials
RAS-NAAD – retrospective NAAD dynamic model
(by Shirshov Institute of Oceanology, Russian Academy of Sciences)

January 1979 – December 2018:

Low resolution – RAS-NAAD LoRes (110 х 110 grid, resolution ≈ 77 km)

High resolution – RAS-NAAD HiRes (550 х 550 grid, resolution ≈ 15 km)

Time resolution – 3 hours

Variables – U and V components of 10m wind speed;
sea-level atmospheric pressure, SLP



Quality metrics
• Root-mean-square error (RMSE)

Ui,j и Vi,j – HiRes wind speed components, U*
i,j и V*

i,j – downscaled wind on 550 x 550 grid

• Root-mean-square error of extreme wind (RMSE-95):

RMSE for grid nodes where wind is higher than its 95th percentile

• Peak signal-to-noise ratio (PSNR)

MAX – maximum normalized value between 3 downscaled variables on 550 x 550 grid,
MSE – mean-square error of 3 normalized downscaled variables
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Linear CNN*

Simplest convolutional neural network (CNN)
in this research

Linear downscaling of wind speed
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* Höhlein K. et al. A comparative study of convolutional neural 

network models for wind field downscaling //Meteorological 

Applications. – 2020. – V. 27. – №. 6. – P. e1961.



ResNet

Increased depth of convolutional neural networks

Increased learning stability (residual connections)

Non-linear activation functions
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U-net (ResNet-based encoder)

Skip connections:

• Learning stability;

• Extracting of functional dependencies corresponding to
different spatial scales;

• Initial features propagate closer to the output.
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SR-GAN*
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* Ledig C. et al. Photo-realistic single image super-resolution using a generative 

adversarial network // Proceedings of the IEEE conference on computer vision and 

pattern recognition. – 2017. – P. 4681-4690.

Two models are trained simultaneously

Generator (G): creates different outputs with the
same dimensions as real high-resolution data

Discriminator (D): determines whether a certain
element is taken from the distribution generated by G
or from the true data distribution

Learning – adversarial process:
G learns to make its output more plausible, similar to
real data distribution.
D learns to define the plausibility of G outputs as 0
and that of real data as 1.



Bicubic interpolation

a c

Fig. Wind speed (00:00, 1 Jan 2010), m/s:

(a) Bicubic interpolation;

(b) Difference between bicubic interpolation and NAAD HiRes;

(c) NAAD HiRes

b

10



Linear CNN

a c

Fig. Wind speed (00:00, 1 Jan 2010), m/s:

(a) Linear CNN downscaling;

(b) Difference between downscaled wind and NAAD HiRes;

(c) NAAD HiRes

b
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ResNet

a c

Fig. Wind speed (00:00, 1 Jan 2010), m/s:

(a) ResNet downscaling;

(b) Difference between downscaled wind and NAAD HiRes;

(c) NAAD HiRes

b
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U-net

a c

Fig. Wind speed (00:00, 1 Jan 2010), m/s:

(a) U-net downscaling;

(b) Difference between downscaled wind and NAAD HiRes;

(c) NAAD HiRes

b
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SR-GAN

a c

Fig. Wind speed (00:00, 1 Jan 2010), m/s:

(a) SR-GAN generator downscaling;

(b) Difference between downscaled wind and NAAD HiRes;

(c) NAAD HiRes

b
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Fig. Wind speed (00:00, 1 Jan 2010), m/s – difference 

between downscaled wind and NAAD HiRes:

(а) Bicubic interpolation;

(b) Linear CNN;

(c) ResNet;

(d) U-net;

(e) SR-GAN
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Results

Method RMSE, m/s RMSE-95, m/s PSNR

Bicubic interpolation 1,44 1,90 35,16

Linear CNN 2,85 5,32 27,68

ResNet 1,42 2,21 32,87

U-net 1,32 1,97 34,46

SR-GAN 1,88 3,30 33,99
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Table. Downscaling quality on validation dataset. 

Bold – the best value for a particular quality metric



Summary 
• Neural networks don’t outperform bicubic interpolation in RMSE-95 and PSNR.

• Based on RMSE, the best method is U-net.

• However, U-net learns to reproduce wind patterns over land, not meeting the purpose of the
research.

• In the research, SR-GAN is the only method where learning is aimed at improving the
reproduction of wind patterns over the ocean.

• SR-GAN does not outperform other methods in chosen quality metrics (incl. cubic interpolation)

• However, we consider SR-GAN to show the most promising results for further improvement
and development.

• GAN downscaling is able to have a wide variety of applications, such as renewable energy and
extreme weather forecasts.
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