A machine learning approach to identify the air shower cores for the GRAPES-3 experiment

Medha Chakraborty

DLCP-2022 On behalf of GRAPES-3 collaboration

July 6, 2022

GRAPES-3 (DLCP-2022 On behalf of GRAF

- Motivation
- GRAPES-3 experiment
- Shower reconstruction
- Manual cuts
- ML in analysis
- Results

2/30

-

ъ

- One of the primary objectives of GRAPES-3 is to measure cosmic ray energy spectrum, composition and sources to probe century old mysteries of CR acceleration and propagation.
- GRAPES-3 also performs several energy dependent analysis, like angular resolution, anisotropy.
- Such analysis get affected by mis-reconstructed air showers.
- This work describes the identification and removal of such showers.

The GRAPES-3 experiment

- Location: Ooty, India (11.4°N, 76.7°E, 2200 m asl)
- \sim 400 plastic scintillators spread over 25000 m^2 with 8 m inter detector separation
- Trigger: L0: 3 line coincidence, L1: at least 10 detectors hit.
- Observables: particle densities and relative arrival times
- Statistics: \sim 3 million showers per day
- Muon telescope covering 560 m^2
- Energy range: 1 TeV 10 PeV

Shower profile

GRAPES-3 (DLCP-2022 On behalf of GRAF

ML in GRAPES-3

July 6, 2022 5 / 23

5/30

Shower reconstruction using NKG function

$$\rho_i = \frac{N_e}{2\pi r_m^2} \frac{\Gamma(4.5-s)}{\Gamma(s)\Gamma(4.5-2s)} (\frac{r_i}{r_m}) (1+\frac{r_i}{r_m})^{s-4.5}$$

 ρ_i : expected density at i-th detector

 r_i : distance of i-th detector from shower core (X_c, Y_c)

 N_e : Shower size

s : Shower age

rm: Moliere radius 103 m at Ooty

Mis-reconstructed cores

Figure: Mis-reconstructed shower cores for 100-158 TeV showers

GRAPES-3 (DLCP-2022 On behalf of GRAF

ML in GRAPES-3

July 6, 2022 7 / 23

- 4 伊ト イヨト イヨト

Q

- Hadronic interaction generator FLUKA below 80 GeV and SIBYLL above this
- Proton : 1 TeV 10 PeV with spectral index -2.5
- Detector response is calculated and reconstructed
- $\bullet\,$ Total number of showers $\sim\!5\times10^8$

Presence of contamination

Thrown upto a distance beyond which L1-trigger fraction is less than 1%. S: Both true and reconstructed cores inside.

B: True cores outside but reconstructed cores inside

Energy(TeV)	Distance(in m)	
1-10	100	
10-15.8	110	
15.8-25.1	120	
25.1-39.8	130	
39.8-63.1	140	
63.1-251.2	300	Contamination, $C = \frac{B}{S+B} \times 100\%$
251.2-398.1	450	
398.1-1584.8	500	
1584.8-2511.9	650	
2511.8-3981.1	700	
3981.1-6309.6	750	
6309.6-10000	800	

Initial contamination

- $\theta \leq 25^{\circ}$, reconstructed cores within the array
- Successful NKG fit

Contaminated showers

Figure: Shower size distributions for $158 TeV \le E \le 251 TeV$

GRAPES-3 (DLCP-2022 On behalf of GRAF

ML in GRAPES-3

July 6, 2022 11 / 23

Contamination with shower size

Maximum contamination shifts to intermediate shower size. Reconstructed energy is a function N_e , so this affects any energy dependent analysis.

・ロット 全部 アイビア・イント

Effects on energy spectrum

13 / 23

Variables

 PSumRatio: PSumRatio = PSumOut/PSumIn PSumIn: Sum of particle densities inside PSumOut: Sum of particle densities outside

- LnNKGP : best functional value obtained for negative log likelihood function used for NKG fit.
- Age : Developmental stage of shower, obtained from NKG fit
- Age err : Error on Age parameter
- ChiSq1 : ChiSq1 of the planar fit for direction reconstruction
- LnCErr : Error in constant term of NKG function

Variables are divided into logarithic N_e bins of width $10^{0.2}$. Cuts are devised on the above variables manually and using machine learning.

イロト イヨト イヨト

Variables

 $4.6 \le log_{10}[N_e] \le 4.8$

ML in GRAPES-3

<ロト <回ト < 回ト < 回ト

E

The cuts are applied chronologically on the variables by calculating signal loss, contamination and signal significance $(S/\sqrt{S+B})$ at each step

This was repeated for all other size bins and all other variables.

GRAPES-3 (DLCP-2022 On behalf of GRAF

Method 2: Analysis with machine learning

- Tedious to deal with several variables in manual cuts.
- Machine learning was used for this purpose.
- Method: BDT-G, maximum area of ROC curve
- Simulated data divided into two equal halves for training and testing

TMVA package of ROOT was used. GRAPES-3 (DLCP-2022 On behalf of GRAF ML in

Training checks

 $4.0 \leq \textit{log}_{10}[\textit{N}_{e}] < 4.2$

(a) The ROC curve matches well for train and test

(b) KS test

イロト イポト イヨト イヨト

BDT-G parameters adjusted to obtain the maximum area within ROC. BDT output variable shows clear separation

ML in GRAPES-3

19/30

Э

Results: Contamination

Results: Signal loss

GRAPES-3 (DLCP-2022 On behalf of GRAF

ML in GRAPES-3

July 6, 2022 21 / 23

Improvements in energy spectrum

Machine learning reduces the deviation in energy spectrum measurements. $^{22/30}$

- Mis-reconstructed showers were identified using manual cuts and BDT-G.
- Better measurement of energy spectrum can be achieved using machine learning
- This approach will improve energy estimation of any energy dependent analysis

Backup

GRAPES-3 (DLCP-2022 On behalf of GRAF

ML in GRAPES-3

590 July 6, 2022

1/30

æ

<ロト < 四ト < 回ト < 回ト

Energy reconstruction

Variation of NKGSize with Energy for 1.00<Sec[0]<1.05

(a) Median energy plotted with median N_e for different zenith bins

(b) Fitted linearly to find $E_R(N_e, \theta)$ for $1.0 \le sec(\theta) < 1.05$

Correlation

Correlation Matrix (signal)

Correlation Matrix (background)

(a) Signal

(b) LnNKGP

イロト イポト イヨト イヨト

ML in GRAPES-3

3/30

э

Variables	Importance
PSumRatio	0.48
LnNKGP	0.32
Age	0.14
LnCErr	0.04
AgeErr	0.02

イロト イロト イヨト イ

4/30

≣ ▶

Results: Contamination

ML in GRAPES-3

5/30

イロト イポト イヨト イヨト

The cuts are applied chronologically on the variables. Contamination, signal loss and signal significance are studied at every step. For $4.6 \leq log_{10}[N_e] \leq 4.8$. Eg: The cut deviced for PSumRatio is shown.

This was repeated for all other size bins and all other variables.

GRAPES-3 (DLCP-2022 On behalf of GRAF

Variables

$4.6 \leq log_{10}[NKGSize] \leq 4.8$

GRAPES-3 (DLCP-2022 On behalf of GRAF

ML in GRAPES-3

7/30