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Introduction to the JUNO experiment

@ Jiangmen Underground Neutrino Observatory:

o multipurpose experiment
53 km away from 8 reactor cores in China
data taking expected in ~2023
JUNO Collaboration:
o 77 institutions
@ 697 collaborators

@ The main goals of JUNO:

@ neutrino mass ordering (3¢ in 6 years)
@ precise measure of oscillation parameters
Sin2 912, Am%l, Amgl

© The Central Detector:

detection channel: 7. +p — e + n;
deposited energy converts to optical light
the largest liquid scintillator detector: 20 kt
77.9% photo-coverage: 18k 20, 26k 3”
photo-multiplier tubes (PMTs)
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Machine Learning (ML) in HEP

@ ML methods are used at all levels of data processing in many HEP experiments:

signal/background discrimination
event selection in the trigger
event simulation

anomaly detection

identification, etc.

o Why is ML useful for HEP?

Faster. More precisely, with proper training

Adequate for many purposes simultaneously: event simulation, analysis, reconstruction,
identification, etc.

GPU friendly by construction, which is important for big data processing

@ Machine-learning algorithms use statistics to find patterns in massive amounts of data

@ Our task is a supervised learning problem (regression)

A. Gavrikov (HSE+JINR) DLCP 2022 2022-07-06



Problem statement

An example of a positron event with deposited energy ~6 MeV.| The grey sphere | — the primary vertex.

Charge at PMT First Hit Time (FHT) at PMT

We want to reconstruct:

Deposited energy Eqep, with resolution 3% @ 1 MeV
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@ Two datasets: for training and for testing o full detector and electronics simulation
@ generated by the Monte Carlo method o using the official JUNO software

Data description:
@ positron events
@ uniformly spread in the volume of the central detector
@ FEin € [0,10] MeV. Egep = Elin + 1.022 MeV

o Training dataset: o Testing dataset:
© 5 million events © subsets with discrete kinetic energies:
@ uniformly distributed in @ 0,01,03,06,1,2, .., 10 [MeV]

kinetic energy Eiin Q@ > = 1.4 million events: each subset

contains 100k
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Aggregated features

We use aggregated information from the whole array of PMTs as features for models:

@ AccumCharge — the accumulated charge on fired PMTs Q = F
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@ nPMTs — the total number of fired PMTs o

@ Coordinates of the center of charge:
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Aggregated features

@ Percentiles of FHT and charge distributions: @ Differences between percentiles for FHT:
o {htao, htsos, htioes, htisos, ..., htooss, htgses } o {htso—29%, hti0%—5%, .-, Ntoses—g0% }

© {pexs, pesw, Pe1os, Peists, ---, Pesoss, Peosss } @ Moments for FHT and charge distributions:

° {htmeam htsld: htskew> htkurlosis}
4 {Pemeany P€std, PEskew, pekunosis}
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CDFs and PDFs for FHT (left) and charge (right) distributions. R ~ 0 m, Fj, varied. Dashes lines show mean values.
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Models description: BDT

A Decision Tree (DT) takes a set of input features and splits input data recursively based on those features.
Boosted Decision Trees (BDT):

@ Ensemble model

@ DT as base algorithm

@ DTs in BDT are trained sequentially

@ Each subsequent DT is trained to correct errors of previous DTs in the ensemble

- = “
" + " + 4+ N

Figure: BDT demonstration. Source: https://arogozhnikov.github.io/
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BDT: hyperparameters and benefits

Main tunable hyperparameters:
@ Max. depth: The maximum depth of a tree (usually <12)
@ Learning rate: This determines the impact of each tree on the final outcome (usually ~ 0.1)

@ Number of trees: How many trees in ensemble

Benefits:
@ Fast for training and prediction
@ FEasier to tune

@ Minimalistic
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BDT: optimized set of features

BDT from XGBoost:

@ Optimized set of features (sorted by importance):

MAPE, %

@ AccumCharge @ nPMTs © htso,_oo
9 Rcht 0 htkunosis @ P€mean
Q 2 @ htyse, 0% @ Jun
0 Péstd e Rcc @ ¢CC
1.22
1215
121
1.205
12
1.195
1.19
BT e e e e e e B B
&, o ¢ & by 2 Ja Ly 5 &r Y
Yy 5 \4107 \9&2%\00 L8 2 ‘i,,,% ('ob b chy Lo N \30 \3% \302
Added feature

@ htsse—30%
@ htygo—15%
@ pesso

@ htspo,—_25%

@ Optimized hyperparameters
(using Grid Search):

@ The maximum depth of
the tree: 10

@ Number of trees in the
ensemble: ~300

© Learning rate: 0.08
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Models description: FCDNN

X1

Neuron

factivation
Wi, Ws, W3

b

@ A fully connected neural network consists of layers
with sets of units called neurons

@ Neuron computes a linear combination of its inputs
and passes it to a non-linear activation function h:
fx) =h(Wx+b)

Input layer Hidden layers

@ Each neuron in a layer is connected with each
neuron in the next layer

@ Many layers — deep neural network
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Models description: FCDNN

Fully-connected deep neural network (FCDNN):
. . @ The search for hyperparameters was
Input layer : Hidden layers - performed using BayesianOptimizer
256 units - 256 units . i ; ;
: h1 e o hie @ Training with early stopping
— : @ Validation dataset: 400k events
AccumCharge —> @ . .
9 : @ Selected features provided the same
performance as full set:
" nPMTs  —> @‘ MAPE loss
g ‘ @ AccumCharge Q oo
3 Edep @ nPMTs @ penean
L]
8 Q R Q pew
¢ o Rcht e P€skew
® J : e Pcc @ PE€kurtosis
htose - @ : . o : @ Percentiles of FHT distribution:
: {htao, htsoe, htioss, htise, ..., htaos, htose }
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Metrics:

@ Defined by a Gaussian fit of the

Epredicted — Eep distributions 3
- -
@ Resolution: o/ E4ep, where o — standard i ) ECDENN
deviation of the fit o 25 1
=)
@ Bias pu/ Edep, where p — mean of the fit g ‘x\
£ 2 3
Parameterization: 2 \..
2 -
2 =
70- = a +b2+< ¢ > -\-—\HE ———
Edep A/ Edep Edep o 0.%
o
. -~ = e —— —— —— —— = == ——
Models’ pred. time and memory usage: & (] == T
R 02 F
BDT | FCDNN 1 2 3 4 5 6 7 8 9 10

Pred. time, sec/100k | 3.5 17
Size, MB 50 12

Deposited energy, MeV
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Calibration sources

@ We consider three calibration sources (i.e. sources with well-known signal):

Source Type | Radiation

2ATAM—13C | v neutron + 6.13 MeV

60Co y 1.173 + 1.333 MeV

58Ge et annihilation 0.511 + 0.511 MeV

@ Can be used for validation: the agreement between the expected source spectra and the spectra reconstructed from the real
calibration data will indicate the robustness of the algorithms’ prediction

1 Ir T 0.6— :
AmC: 07 Co60: Ge68:
0.8 H— True energy 0.6 H{— True energy 0.5 {— True energy
’ Pred. energy 051 Pred. energy Pred. energy
0.6 || Pred. energy (corrected) " | [ Pred. energy (corrected) 0.4
: .4
0 0.3
0.4 0.3
o2 | 0.2
02 J_,_,_r-—\_‘_L 01 r ] 0.1
0 - \ N | 0 J " o dr——————ll _
2 2.1 22 2.3 2.4 2.5 1 1.5 2 25 0.6 0.8 1 1.2 14
Deposited energy, MeV Deposited energy, MeV Deposited energy, MeV

@ There is an additional bias, caused by the different event topology for gamma sources as opposed to positrons in the training
dataset, which was corrected using values predicted by the models on pure gamma events
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o Energy reconstruction using the information collected by PMTs
e Aggregated features approach

e The following ML models are used: BDT, FCDNN
e As aresult achieved:
© High quality 3% @ 1 MeV, requared for physics goals of JUNO
@ Great computation speed, thanks to a small set of aggregated features (in 10* — 10°

times faster than traditional methods)

o Considered three calibration sources for the future evaluation of the models on the
real data
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