

Study of the VH($H \rightarrow b\overline{b}$) production by MVA methods

Faig Ahmadov JINR & IP, ANAS

6th International Workshop DLCP-2022 06-08.07.2022

Introduction

- Theoretically, the existence of the Higgs boson was introduced in 1964 with the Higgs mechanism.
- → The Higgs boson observed on 4 July 2012 (ATLAS & CMS) in $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, decay channels;
- ► Late observation of the $H \rightarrow W^+W^-$, $H \rightarrow \tau^+\tau$ decay and ggH, VBF production channels.
- > $H \rightarrow b\bar{b}$ decay channel plays an important role in studying the properties of the Higgs boson, since this is the dominant decay mode (**BR** ≈ 58%).
- > 2018 observation of $H \rightarrow b\overline{b}$ decay and VH production channels.
- After observing the main production and decay channels, the study of the Higgs boson moves from discovery to the era of precise measurements.

Production & decay of the Higgs boson

Signal & background

3 lepton channels: 0-lep. $ZH \rightarrow \nu\nu b\overline{b}$, 1-lep. $WH \rightarrow \ell\nu b\overline{b}$, 2-lep. $ZH \rightarrow \ell\ell b\overline{b}$

Main backgrounds: **Z+jets**, **W+jets**, **ttbar** and **single top**. In 2-lep. channel *ttbar* estimated by data-driven method. Backgrounds similar to signal: $ZZ \rightarrow \nu\nu b\overline{b}$, $WZ \rightarrow \ell\nu b\overline{b}$, $ZZ \rightarrow \ell\ell b\overline{b}$ **Multijet** background: Estimated using data-driven method in 1-lep. Negligible in 0 and 2-lep. channel.

Object reconstruction

- Loose el.: $p_T > 7$ GeV, $|\eta| < 2.47$, low quality, track-based iso. Signal el.: loose el + high quality, calo-based iso. and $p_T > 27$ GeV.
- Loose muons: p_T > 7 GeV, |η| < 2.7, low quality, loose track iso.
 Signal mu: loose mu + medium quality, tighter track iso.
 and p_T > 25 GeV.
- E_T^{miss} : negative vector sum of the p_T of leptons, photons, had. τ , jets, and a 'soft-term'.
- **Hadronically decaying** τ : $p_T > 20$ GeV, $|\eta| < 2.5$ (exc. 1.37< $|\eta| < 1.52$), 'medium' quality. Not used for ev. sel., only for E_T^{miss} calculation and to avoid double-counting τ as other objects.
- Jets: Topo-cluster of calo. cell using anti-k_t algorithm, R=0.4, *p_T* > 20 GeV, |η|<2.5 and *p_T* > 30 GeV if 2.5<|η|<4.5, Jet Vertex Tagger (JVT(to remove jets with *p_T*< 120 GeV, |η|<2.5 if not associated primary vertex.
- **B-jets** identified using a multivariate discriminant (MV2), with an average efficiency of 70%, which corresponds to light jet (u-, d-,s-quark and gluon) and c-jet misidentification efficiencies of 0.3% and 12.5% respectively.

Event selection

Selection	0-lepton	1-lepton		2-lepton
	-	e sub-channel	μ sub-channel	-
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton
Leptons	0 <i>loose</i> leptons	Exactly 1 tight electron 0 additional loose leptons $p_{\rm T} > 27~{\rm GeV}$	Exactly 1 tight muon 0 additional loose leptons $p_{\rm T} > 25~{\rm GeV}$	Exactly 2 <i>loose</i> leptons $p_{\rm T} > 27 \text{ GeV}$ Same-flavour Opposite-sign charges ($\mu\mu$)
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 { m ~GeV}$	$> 30 { m ~GeV}$	_	_
$m_{\ell\ell}$	_	-	_	$81~{\rm GeV} < m_{\ell\ell} < 101~{\rm GeV}$
Jet $p_{\rm T}$		> 20 GeV for $ \eta < 2.5$ > 30 GeV for $2.5 < \eta < 4.5$		
<i>b</i> -jets		Exactly 2 <i>b</i> -tagged jets		
Leading <i>b</i> -tagged jet $p_{\rm T}$		> 45 GeV		
Jet categories	Exactly 2 / Exactly 3 jets	Exactly 2 / Exactly 3 jets		Exactly 2 / \geq 3 jets
H_{T}	> 120 GeV (2 jets), >150 GeV (3 jets)	_		_
$\min[\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$	_		_
$\Delta \phi (ec{E}_{ ext{T}}^{ ext{miss}}, ec{bb})$	$> 120^{\circ}$	-		_
$\Delta \phi(\vec{b_1}, \vec{b_2})$	$< 140^{\circ}$	-	_	_
$\Delta \phi(E_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\rm miss})$	$< 90^{\circ}$	-	_	_
$p_{\rm T}^V$ regions	_	-	_	$75~{\rm GeV} < p_{\rm T}^V < 150~{\rm GeV}$
	$150 { m ~GeV} < p_{ m T}^V < 250 { m ~GeV}$	$150 { m GeV} < p_{ m T}^V$	$\Gamma^{\prime} < 250~{ m GeV}$	$150 \text{ GeV} < p_{\mathrm{T}}^{V} < 250 \text{ GeV}$
	$p_{\rm T}^V > 250 { m ~GeV}$	$p_{\mathrm{T}}^{V} > 25$	$50 { m GeV}$	$p_{\mathrm{T}}^{V} > 250 \mathrm{GeV}$
Signal regions	$\Delta R(\vec{b_1}, \vec{b_2})$ signal selection			
Control regions	High and low $\Delta R(\vec{b_1}, \vec{b_2})$ side-bands			

Analysis methods

Two multivariate analysis techniques are compared:

- Boosted Decision Tree (BDT)
- > Neural Network (NN).
- ➢ In the LHC experiments:
 - ✓ ATLAS VHbb analysis uses BDT
 - ✓ CMS VHbb analysis uses Deep NN.
 - ✓ Previously, the cut-based method was used in both experiments.

Cut-flow analysis

- 1. Object selection electron, muon, neutrino, b-jet selection
- 2. Final event selection
- 3. Additional event selection cuts for cut-based analysis:

Multivariate Analysis

- The input variables are chosen in order to maximise the separation of the signal and background events.
- MVA is used to improve cut-flow analysis results.
- The selection criteria are looser in the MVA than in the cut-flow analysis in order to maximize the information available to the final discriminant.
- BDT & NN technique as an effective multivariate method, is used to properly account for correlations between variables.

Input variables

Variable	0-lepton	1-lepton	2-lepton	
p_{T}^{V}		×	×	
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×	
$p_{\mathrm{T}}^{b_1}$	×	×	×	
$p_{\mathrm{T}}^{b_2}$	×	×	×	
m_{bb}	×	×	×	
$\Delta R(b_1, b_2)$	×	×	×	
$ \Delta\eta(b_1,b_2) $	×		×	
$\Delta \phi(V,bb)$	×	×	×	
$ \Delta\eta(V,bb) $			×	
H_{T}	×			
$\min[\Delta \phi(\ell, b)]$		×		
$m_{ m T}^W$		×		
m_{ll}			×	
m_{Top}		\times		
$ \Delta Y(V,H) $		×		
	Only in 3-jet events			
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×	
m_{bbj}	×	×	×	

Some new variables

 $\cos\theta_{e}^{*}$

WHbb WZbb Wbb

 $\cos\theta_w$

MVA input variables

MVA input variables

Correlation Matrix

Correlation Matrix (background)

Background

Signal

BDT training settings

Input variables:

2-Lepton channel:

"mBB:dRBB:dPhiVBB:dEtaVBB:pTV:pTB1:pTB2:mLL:cosThetaLep + mBBJ:pTJ3 for ≥ 3 jet events

hyper-parameters:

```
BoostType= ["Grad"]
Shrinkage = [0.5]
SeparationType = ["GiniIndex"]
PruneMethod = ["NoPruning"]
```

```
NTrees = [100,200,300]
MaxDepth = [3,4,5]
nCuts = [50,100,150]
MinNodeSize = [4,5,6]
```

81 hyper-parameters combinations

NN training settings

Input variables:

2-Lepton channel:

"mBB:dRBB:dPhiVBB:dEtaVBB:pTV:pTB1:pTB2:mLL:cosThetaLep + mBBJ:pTJ3 for ≥ 3 jet events

hyper-parameters:

Types=TMlpANN; NCycles=200, 1000, 2000, 3000, 4000, 6000; Hidden Layers=N,N-1; N,N; N,N+1; Learning Method=BFGS; Validation Fraction=0.3, 0.5.

ROC from BDT & NN

BDT with optimised hyper-parameter setting

Types=BDTG,NTrees=200:MaxDepth=4:BoostType=Grad:Shrinkage=0.5: SeparationType=GiniIndex:nCuts=100:MinNodeSize=5:PruneMethod=NoPruning.

- **NN with default hyper-parameter setting** Types=TMlpANN, NCycles=200:HiddenLayers=N,N-1:LearningMethod=BFGS: ValidationFraction=0.3;
- Number of signal (N_s) & background (N_b) events: $N_s = N_b$;
- Number of training (N_{tr}) & Number of testing (N_{ts}) events: $N_{tr} = N_{ts}$;
- Number of training signal events: $N_{tr,s} = 10K$, 20K, 50K, 100K, 200K, 400K.

 $N_{tr} = 50K$

 $N_{tr} = 20K$

 $N_{tr} = 10K$

ROC from BDT & NN

BDT with optimised hyper-parameter setting

Types=BDTG,NTrees=200:MaxDepth=4:BoostType=Grad:Shrinkage=0.5: SeparationType=GiniIndex:nCuts=100:MinNodeSize=5:PruneMethod=NoPruning.

- **NN with default hyper-parameter setting** Types=TMlpANN, NCycles=200:HiddenLayers=N,N-1:LearningMethod=BFGS: ValidationFraction=0.3;
- Number of signal (N_s) & background (N_b) events: $N_s = N_b$;
- Number of training (N_{tr}) & Number of testing (N_{ts}) events: $N_{tr} = N_{ts}$;
- Number of training signal events: $N_{tr,s} = 10K$, 20K, 50K, 100K, 200K, 400K.

ROC from BDT & NN

BDT with optimised hyper-parameter setting

Types=BDTG,NTrees=200:MaxDepth=4:BoostType=Grad:Shrinkage=0.5: SeparationType=GiniIndex:nCuts=100:MinNodeSize=5:PruneMethod=NoPruning.

- NN with optimised hyper-parameter setting Types=TMlpANN, NCycles=2000/3000/4000:HiddenLayers=N,N-1: LearningMethod=BFGS: ValidationFraction=**0.5**;
- Number of signal (N_s) & background (N_b) events: $N_s = N_b$;
- Number of training (N_{tr}) & Number of testing (N_{ts}) events: $N_{tr} = N_{ts}$;
- Number of training signal events: $N_{tr.s} = 10K$, 20K, 50K, 100K, 200K, 400K.

NCycles=2000

NCvcles=4000

NCycles=3000

 $N_{tr.s} = 100K$

 $N_{tr,s} = 400$

9

 $N_{tr.s} = 50K$

Overtraining check

TMVA overtraining check for classifier: BDTG õ Signal (test sample) Signal (training sample) / NP (N/L) Background (test sample) Background (training sample) 2.5 Kolmogorov-Smirnov test: signal (background) probability = 0.009 (0.004) 8,B): (0.0, 0.0)% / (0.0, 0.0) 1.5 0.5 n -0.4 -0.8 -0.6 -0.2 0.2 0.4 0.6 0.8 0 BDTG response

TMVA overtraining check for classifier: TMIpANN

 $N_{tr,s} = 400K$

$$N_{tr,s} = 50K$$

Efficiencies

 $N_{tr,s} = 100K$

 $N_{tr,s} = 400K$

Conclusions

- The two MVA methods BDT and NN were compared to find the methods with the best performance for *VHbb* analysis.
- Up to 0.8 million signals and the same number of background events were used for training.
- The settings with the best performance were chosen to tune the BDT hyperparameters.
- A different number of events are trained and different settings for NN are obtained, providing performance that exceeds that of BDT.
- It turns out that for any number of training events, it is possible to find corresponding NN settings with better performance than BDT.
- The only problem with NN training is that, compared to BDT, it requires more computational resources.

Thank you for your attention!