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Neural network method for integration
Let’s spouse to have a continuous real function f : Rn → R over the domain
S, then the integral is

I [f ] =
∫

S
f (x)dx , (1)

where S is a convex, bounded set in Rn.
According to the universal approximation theorem [1] and theorem 2 from [4],
we approximate the function f (x) using a single-layer neural network
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with a logistic sigmoid activation function so that this network can be integrated
analytically over an arbitrary domain S by the following formula from [4]:
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where
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Here ξr is the sign in front of the r-th term of the sigmoid integration, and
`i,r is the corresponding integration limit for the i-th dimension, defined by the
corresponding formulas:

ξr =
n∏

d=1
(−1)br/2n−dc , (5)

`i,r =

αi, if br/2n−ic is even,
βi, otherwise.

(6)

Sampling of an Integrand
For an integrand sampling the hybrid method is proposed, in which a part of the
training set DMH is generated by applying the Metropolis-Hastings algorithm
[3]. The other part of the sample DUG consists of the nodes of the uniform
grid. Thus, D = DMH ∪ DUG. We introduce ρ as a ratio between an amount
of MH-points to N : ρ = |DMH| /N . An example of generating points using a
hybrid method and the Metropolis-Hastings algorithm is shown in the figures
below:

(a) The example of corner peak function. (b) Uniform grid sampling.

(c) Metropolis-Hastings sampling (d) Hybrid sampling with ρ = 0.5.

Figure: An example of various ways to sample a function.

Numerical Evaluation
We have performed the hybrid sampling for three classes of parameterized func-
tions from [2]:
Oscillatory function:

f (1)(x) = cos(2πu1 +
n∑

i=1
cixi) (7)

Corner Peak Function:

f (2)(x) = (1 +
n∑

i=1
cixi)−(n+1) (8)

Continuous Function:

f (3)(x) = exp(−
n∑

i=1
ci|xi − ui|) (9)

The integration accuracy is evaluated by determining the number of correct
digits between the analytical solution and the numerical values:

CD(I, Î) = − log10

∣∣∣∣∣∣∣
I − Î

I

∣∣∣∣∣∣∣ . (10)
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(a) Results for Oscillatory function in 2D
domain
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(b) Results for Oscillatory function in 6D
domain
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(c) Results for Corner Peak Function in
2D domain
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(d) Results for Corner Peak Function in
6D domain
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(e) Results for Continuous Function in 2D
domain
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(f) Results for Continuous Function in 6D
domain

Figure: Results of integration with hybrid sampling for (7)–(9) functions. Each point on the
graphs is the average value of 20 integrals for a given ρ. For large values of N = 105, the
number of trials was reduced to 5 due to the long training time.
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