

ML/DL/HPC Ecosystem of the HybriLIT Heterogeneous Platform (MLIT JINR): New Opportunities for Applied Research

Butenko Yu.¹, Ćosić M.², Nechaevskiy A.¹, Podgainy D.¹, Rahmonov I.¹, Streltsova O.¹, Zuev M.¹

¹ Joint Institute for Nuclear Research
 ² Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia

This work was supported by the Russian Science Foundation under grant No 22-71-10022

The 6th International Workshop on Deep Learning in Computational Physics (DLCP-2022)

Dubna, JINR, 6-8 July 2022

Educational program on the MICC

Training courses, master classes and lectures

LIT staff and leading scientists from JINR and its Member States

Leading manufacturers of modern computing architectures and software

Parallel programming technologies

MPI

Tools for debugging and profiling of parallel applications

Work with applied software packages

Frameworks and tools for ML/DL tasks

Ecosystem for ML/DL/HPC tasks

Development component

VM with JupyterHub https://jhub.jinr.ru

VM:

CPU: 24 Cores

RAM: 32 GB

Computation component

Servers with
NVIDIA
Volta & Intel Xeon Gold
https://jhub2.jinr.ru

Dell Volta specs:

GPU: 4x Nvidia Volta V100-

SXM2 NVLink 32Gb

HBM2

CPU: 2x Intel(R) Xeon(R) Gold

6148 CPU @

2.40GHz 20 Cores/40

Threads

RAM: 512 GB DDR4 2666MHz

SSD: 2*240 GB

HPClab component

VM with
JupyterHub and SLURM
https://jlabhpc.jinr.ru/

CPU: 24 Cores

RAM: 64 GB

High Performance Computing

Relevance of the work

Numerical research process

The creation of a toolkit that allows one to carry out computations, to visualize the results within a single application, and perform the most resource-intensive calculations in parallel is an urgent task. The *Jupyter Notebook* environment provides this capability.

Developed services

saas.jinr.ru

sources					
IINR cloud					
lybriLIT cluster					
mber of VMs: 10/20	CPU per VM: 15/22	RAM per VM (GB): 27/41			
	1	1	··/ Idisp.dat	02-Apr-2021 11:04	
			Ig.dat	02-Apr-2021 11:04	
			Is.dat	02-Apr-2021 11:04	
			Is w down.dat	02-Apr-2021 11:04	
			<u>Is w up.dat</u>	02-Apr-2021 11:03	
			Isum.dat	02-Apr-2021 11:04	
			Voltage.dat	02-Apr-2021 11:04	
			initial cond.dat	02-Apr-2021 11:05	1
			m Tf.dat	02-Apr-2021 11:05	-
			m max w down.dat	02-Apr-2021 11:05	
			m max w up.dat	02-Apr-2021 11:03	8
			mx max I down.dat	02-Apr-2021 11:05	
			mx max I up.dat	02-Apr-2021 11:03	8
			my max I down.dat	02-Apr-2021 11:05	•
			my max I up.dat	02-Apr-2021 11:03	8
			mz max I down.dat	02-Apr-2021 11:05	•
			mz max I up.dat	02-Apr-2021 11:03	8
			sfsjj.836337.err	02-Apr-2021 11:02	•
			sfsjj.836337.log	02-Apr-2021 11:05	

Developed services

sconduct.jinr.ru

Расчет временной динамики сверхпроводник/ферромагнит/сверхпроводник

Справочные материалы

Параметры модели

Главная Демо модели Публикации Войти

Примеры реализованных алгоритмов:

Выбранный файл: my_time.dat

0.000000	0.000000000000000
0.010000	0.000000000000000
0.020000	0.000000000000000
0.030000	0.000000000000000
0.040000	0.000000000000000
0.050000	0.000000000000000
0.060000	0.000000000000000
0.070000	0.000000000000000
0.080000	0.000000000000000
0.090000	0.000000000000000
0.100000	0.000000000000000
0.110000	0.000000000000000
0.120000	0.000000000000000
0.130000	0.000000000000000
0.140000	0.000000000000000
0.150000	0.000000000000000
0.160000	0.000000000000000
0.170000	0.000000000000000
0.180000	0.000000000000000
0.190000	0.000000000000000
0.200000	0.000000000000000
0.210000	0.000000000000000
0.220000	0.000000000000000
0.230000	0.000000000000000
0.240000	0.000000000000000
0.250000	0.000000000000000
0.260000	0.000000000000000
0.270000	0.000000000000000
0.280000	0.000000000000000
0.290000	0.000000000000000
0.300000	0.000000000000000
0.310000	0.000000000000000
0.320000	0.000000000000000
0.330000	0.000000000000000
0.340000	0.000000000000000
0.350000	0.000000000000000
0.360000	0.000000000000000

0.000000000000000

0.370000

Выбранный файл: my_time.dat

Python Numerical Methods

ΛĚ

pythonnumericalmethods.berkeley.edu

Example 1. Problem to study the dynamics of magnetization in a Phi-O Josephson Junction (SFS structure)

Collaboration with Ilhom Rahmonov (Bogoliubov Laboratory of Theoretical Physics, JINR)

The dynamics of the magnetic moment M of the system under consideration is described by the Landau-Lifshitz-Gilbert equation:

$$\begin{split} \frac{dm_{x}}{dt} &= -\frac{1}{1 + M^{2}\alpha^{2}} \{ m_{y}H_{z} - m_{z}H_{y} + \alpha [m_{x}(M, H) - H_{x}] \}, \\ \frac{dm_{y}}{dt} &= -\frac{1}{1 + M^{2}\alpha^{2}} \{ m_{z}H_{x} - m_{x}H_{z} + \alpha [m_{y}(M, H) - H_{y}] \}, \\ \frac{dm_{z}}{dt} &= -\frac{1}{1 + M^{2}\alpha^{2}} \{ m_{x}H_{y} - m_{y}H_{x} + \alpha [m_{z}(M, H) - H_{z}] \}, \end{split}$$

 $M = [m_x, m_y, m_z]$ are the magnetic moment components; the effective field components $H = [H_x, H_y, H_z]$ depend on the Josephson phase difference ϕ and are defined as follows:

$$H_{x}(t) = 0,$$

$$H_{y} = Gr \sin(\phi(t) - tm_{y}(t)),$$

$$H_{z}(t) = m_{z}(t).$$

The equation for the Josephson phase difference $\phi(t)$ is determined from the equation for the electric current I flowing through the Josephson junction, measured in units of the critical current I_c :

$$\frac{d\phi}{dt} = -\frac{1}{w} \left(\sin(\phi - rm_y) + r \frac{dm_y}{dt} \right) + \frac{1}{w} I,$$

Model parameters:

G — ratio of the Josephson energy to the magnetic anisotropy energy; r — spin-orbit interaction constant; α — Hilbert dissipation parameter; in this study w=1.

Example 1. Python implementation

Calculations for different values of parameters

30

To analyze the possibility of reversing the magnetic moment of the ϕ_0 -Josephson junction at different values of the parameters, we will carry out calculations for G=8.9.

```
from scipy.integrate import solve ivp
from functools import partial
f = partial(my_sfs, G=G, r=r, alpha=alpha, \
                As=As, t_s=t_s, delta_t=delta_t)
\#t_e = np.arange(0, 25, 0.0001)
t_e=np.linspace(0,60,1000)
s0 = np.array([0, 0, 1, 0])
sol_2=solve_ivp(f,[0,60],s0, t_eval=t_e) # method = 'Radau'
plt.figure(figsize = (8, 6))
plt.plot(t e,y I, label= 'Rectangular current pulse')
plt.plot(sol_1.t, sol_1.y[2], label= 'Componet $m_z $ at G=8' )
plt.plot(sol 2.t, sol 2.y[2], label= 'Componet $m z $ at G=%4.2f' %G)
plt.xlabel('t', size=16)
plt.ylabel('$m_z(t)$', size=16)
plt.legend(fontsize=12)
plt.show()
     1.5
                                               Rectangular current pulse
                                               Componet mz at G=8
                                               Componet mz at G=9.00
     1.0
 m_z(t)
     0.0
    -0.5
    -1.0
```

```
#plt.figure(figsize = (8, 6))
fig, ax1 = plt.subplots(figsize=(8, 8))
# mask out the negative and positve values, respectively
#Zpos = np.ma.masked_less(alpG[:,:,0], 0)
Z1 = Zc.reshape(N, N)
plt.imshow(Z1, interpolation='bilinear', cmap='Blues')
#plt.contourf(X, Y, Zc, 100)
#fig.colorbar(Zc, ax=ax1)
plt.show()
```

Example 1. Parallel implementation with Python

Define a function called by each process

```
from joblib import Parallel, delayed
import numpy as np
def funk parall(k):
    i=k%N
    i=k//N
   mz sol=0
   G=G0+delta G*i
    alpha=alpha0+delta_alpha*j
    f = partial(my_sfs, G=G, r=r, alpha=alpha, \
               As=As, t_s=t_s, delta_t=delta_t)
    t e=np.linspace(0,60,1000)
    s0 = np.array([0, 0, 1, 0])
    sol_i=solve_ivp(f,[0,60],s0, t_eval=t_e) # method = 'Radau'
   if sol i.y[2][999] < 0:
        mz sol = -1
        # alpGxy[i+j*N,2] = -1
    return mz sol
```

Serial mode calculation

```
t0 = time.time()
rez= Parallel(n_jobs=1)\
    (delayed(funk_parall)(k) for k in range(N*N) )
t1 = time.time()
print(f'Execution time {t1 - t0} s')
Execution time 159.9254457950592 s
```

Computing in Parallel Mode

```
t0 = time.time()
rez= Parallel(n_jobs=6)\
    (delayed(funk_parall)(k) for k in range(N*N) )
t1 = time.time()
print(f'Execution time {t1 - t0} s')

Execution time 34.51503801345825 s
```


HLIT-VDI - Virtual desktops system

Superconducting magnet SC200 designed for medical application

Computational mesh

Magnetic field distribution at median plane of the magnet

Example 2. MATLAB Integration for Jupyter *

https://jhub2.jinr.ru

Example 2. MATLAB Integration for Jupyter

Collaboration with Marko Ćosić (Laboratory of Physics, Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia)

https://jhub2.jinr.ru

Thanks for your attention!

This work was supported by the Russian Science Foundation under grant No 22-71-10022

The 6th International Workshop on Deep Learning in Computational Physics (DLCP-2022)

Dubna, JINR, 6-8 July 2022