

Новая физика, где она?

	Section	Equation	Value $\times 10^{11}$	References	
E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]	
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2–7]	
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)) Ref. [7]	
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)) Ref. [8]	
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)) Refs. [9–17]]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)) Refs. [18–3	0]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)) Ref. [31]	
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)) Ref. [32]	
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)) Refs. [18–3	0, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 3	4]
Electroweak	λ	8 8		Å	λλ
$HVP(e^+e^-, LO + NLO + NNL)$	v Lh	/ b / L	$\lambda \land \land$	7.	
HLbL (phenomenology + lattic	to Land de	and the second	Y MA	and E	And And
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$ (1)	(2)	(3) (4	(5) (6)	(7)	(8) (9)
k	à	1 1	1 1	Å	λ λ
Table 1: Summary of the contribution:		Αſ	Vo A of	οA	Λ Λ
contributions from Secs. 2 to 5 as well	A Lood A	607 Loo	5 For La	ADA Z	6002 602
second block summarizes the quantitie	V an V	(m) / (m)			/ (17) (10)
orders and the final rounding includes) (11)	(12) (13	5) (14) (15) (10)	(17) (18)
89]. In addition, the HLbL evaluation u	λ.	~ ~		Å	
crucial methodological advances from	(\land)	() ($) \land \land$	Λ	
measurements of the Cs atom [117].	1 401	ММ	3 M AO	A 40A	
794		(21) (24	a) (a) (a)	~ / <u>(05)</u>	
(19) (20)	(21) (2)	z) (23) (24) (25)	

Contribution	Section	Equation	Value ×10 ¹¹	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2–7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9–17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18–30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18–30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
HVP (e^+e^- , LO + NLO + NNLO)	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18–32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

Table 1: Summary of the contributions to a_{μ}^{SM} . After the experimental number from E821, the first block gives the main results for the hadronic contributions from Secs. 2 to 5 as well as the combined result for HLbL scattering from phenomenology and lattice QCD constructed in Sec. 8. The second block summarizes the quantities entering our recommended SM value, in particular, the total HVP contribution, evaluated from e^+e^- data, and the total HLbL number. The construction of the total HVP and HLbL contributions takes into account correlations among the terms at different orders, and the final rounding includes subleading digits at intermediate stages. The HVP evaluation is mainly based on the experimental Refs. [37–89]. In addition, the HLbL evaluation uses experimental input from Refs. [90–109]. The lattice QCD calculation of the HLbL contribution builds on crucial methodological advances from Refs. [110–116]. Finally, the QED value uses the fine-structure constant obtained from atom-interferometry measurements of the Cs atom [117].

Muon anomalous magnetic moment $a_{\mu} \times 10^{9} - 1165900$

J-PARC muon g-2/EDM experiment

КАРТИНА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ:

Physics Beyond the Standard Model

- Dark Matter existence established at cosmological scales
 - New weakly interacting particles
- Neutrinos not exactly massless
 Right-handed (sterile) neutrinos
- Matter anti-matter asymmetry

- - SM
 - Dark Matter
 - Dark Energy
- Additional CP violating interactions
 - The SM must be extended! What is the underlying fundamental theory?

Discovering New Physics

- Flavour
- Neutrino-less double-β decay
- Test of fundamental symmetries
- Proton decay

Different hints for the violation of LFU, with size of the spheres reflecting the significance of the respective tension.

A. Crivellin and M. Hoferichter. Science 374(2021) no.6571, 1051

LFV Channel	Current limit	Projection
$\mu \to e \gamma$	$4.2 imes 10^{-13}$ [Meg coll. (2016)]	6×10^{-14} [Megii Coll. (2018)]
$\mu \rightarrow 3e$	$1.0 imes 10^{-12}$ [SINDRUM Coll. (1988)]	$1 imes 10^{-16}$ [Perrevoort, Mu3e (2018)]
$\mu \to ea, m_a < 13 \mathrm{MeV}$	$5.8 imes 10^{-5}$ [Bayes et al (2014)]	$1 imes 10^{-8}$ [Perrevoort, Mu3e (2018)]
$\mu \to ea, m_a > 13 \mathrm{MeV}$	$9.0 imes 10^{-6}$	
$\mu \to ea\gamma$	$1.1 imes 10^{-9}$ [Bolton et al (1988)]	
$\mu \to e \gamma \gamma$	$7.2 imes 10^{-11}$ [Lampf Coll (1986)]	
$\mu N \to eN$	$7.0 imes 10^{-13}$ [Sindrum-II (2006)]	$1 imes 10^{-17}$ [Mu2e (2014)] [COMET (2020)]

Global Fit to $b \rightarrow s\mu^+\mu^-$ Data

- Perform global model independent fit to include all observables (≈150) ³
- Several NP hypothesis ² give a good fit to data significantly preferred over the SM hypothesis

$$O_{9} = \overline{s} \gamma^{\mu} P_{L} b \overline{\ell} \gamma_{\mu} \ell$$
$$O_{10} = \overline{s} \gamma^{\mu} P_{L} b \overline{\ell} \gamma_{\mu} \gamma^{5} \ell$$

Fit is 5-6 σ better than the SM

There have been four popular portals:

- (1) Vector portal
- (2) Axion portal:
- (3) Higgs portal:
- (4) Neutrino portal

Dark sectors landscape

Broad mass range = can not be covered by a single experiment

Complementary searches involving different techniques

Search of DM

Precision experiments:

- 1) g-2 of leptons
- 2) EDM of leptons, neutrons and etc
- 3) Atomic clock
- 4) Resonator experiments

Search at LHC and other collider experiments :

- 1) CMS, Atlas
- 2) LHCb
- 3) NA62
- 4) GlueX

Missing Energy
and1)NA64 at SPS CERN
2) LDMXMissing momenta
experiments2) LDMX

In superconductors

LFV process

Search of DM

FIG. 3. The 90% C.L. exclusion areas in the $(m_X; \epsilon)$ plane from the NA64 experiment (blue area). For the mass of 16.7 MeV, the $X - e^-$ coupling region excluded by NA64 is $1.3 \times 10^{-4} < \epsilon_e < 4.2 \times 10^{-4}$. The allowed range of ϵ_e explaining the ⁸Be* anomaly (red area) [2, 3], constraints on the mixing ϵ from the experiments E141 [22], E774 [25], BaBar [40], KLOE [45], HADES [48], PHENIX [49], NA48 [51], and bounds from the electron anomalous magnetic moment $(g-2)_e$ [71] are also shown.

LDMX

FIG. 8: Conceptual drawing of the LDMX experiment, showing the electron beam passing through a tagging tracker, impacting on a thin tungsten target, the recoil tracker, the electromagnetic calorimeter, and hadron calorimeter.

The general Lagrangian for this family of models contains

$$\mathscr{L} \supset -\frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} - A'_{\mu} (\epsilon e J^{\mu}_{\rm EM} + g_D J^{\mu}_D),$$

The general Lagrangian for this family of models contains

$$\mathscr{L} \text{dark axion portal} = \frac{g_{a\gamma_D\gamma_D}}{4} aF'_{\mu\nu}\widetilde{F}'^{\mu\nu} + \frac{g_{a\gamma\gamma_D}}{2} aF_{\mu\nu}\widetilde{F}'^{\mu\nu}$$

LDMX

Neutron EDM – Situation & Perspective

Neutron EDM – Situation & Perspective

$$\mathscr{L}_{eff}^{D\leq 5} = \frac{1}{2} (\partial_{\mu}a)(\partial^{\mu}a) - \frac{m_{a,0}^{2}}{2}a^{2} + \frac{\partial_{\mu}a}{\Lambda} \gamma_{\mu} \,\bar{\ell} \left(K_{E}P_{L} + K_{e}P_{R}\right)\ell + e^{2}c_{\gamma\gamma}^{\text{eff}}\frac{a}{\Lambda}F_{\mu\nu}\tilde{F}^{\mu\nu}$$

Quark-level transition that induces neutrinoless double beta decay.

FIG. 1. Absorption process on electrons for an incoming relic particle X, where a phonon Φ is emitted in the final state: $X(q) + e(k) \rightarrow e(k') + \Phi(Q).$

FIG. 1. Absorption process on electrons for an incoming relic particle X, where a phonon Φ is emitted in the final state: $X(q) + e(k) \rightarrow e(k') + \Phi(Q).$

Derevianko and Pospelov calculated how long topological dark matter might de-synchronize a series of atomic clocks on GPS satellites -- essentially the window of time scientists would have to detect such a measurement.

They explain in a paper they published last November on the scientific paper repository arXiv (1311.1244) that the clocks would be desynchronized for about 180 seconds. Since atomic clocks are precise to within one nanosecond, they will need to be desynchronized by at least that amount in order for scientists to detect topological dark matter.

Спасибо за внимание!