

Реактор ПИК: статус и возможности наработки нейтронообогащенных изотопов актинидов

М. Онегин

Совещание по физике тяжелых ионов

Санкт-Петербург, 2022

National Research Centre "Kurchatov Institute" PETERSBURG NUCLEAR PHYSICS INSTITUTE

Reactor PIK now

PETERSBURG NUCLEAR PHYSICS INSTITUTE

Equipment of primary cooling

PETERSBURG NUCLEAR PHYSICS INSTITUTE

Emergency storage of liquid radioactive waste

National Research Centre "Kurchatov Institute" PETERSBURG NUCLEAR PHYSICS INSTITUTE

2011 – First neutrons at PIK

National Research Centre "Kurchatov Institute" PETERSBURG NUCLEAR PHYSICS INSTITUTE

2022 год, Энергопуск, этап 3 – 10 МВт

Создание приборной базы ПИК в рамках Указа Президента РФ от 25.07.2019 "О мерах по развитию синхотронных и нейтронных исследований и исследовательской инфраструктуры в Российской

1 Этап – Создание 5 станций 2 Этап – 25 нейтронных ш-м станций, источников горячих, холодных, ультрахолодных нейтронов. Срок – 2024 год

Этап: 5 станций

13 – Solid State Physics

7 – Nuclear and Fundamental Physics

Also, Ultra Cold Neutron Source, Cold Neutron Source, Hot Neutron Source

IRINA – Investigation of Radioactive Isotopes with Neutrons

- $2 D_2O$ reflector
- 5 Mass separator
- 11 Penning trap
- 12 Laser complex

Переход на ТВС ПИК-2,

Длительность кампании – 20 – 25 суток, время между кампаниями – 7 суток

- В 2023 году планируется продолжение этапа 3 – 10 МВт, но с ТВС ПИК-2
- В 2024 году строительство
 25 станций
- С 2025 года нормальная эксплуатация

Power of CEC water cooling loop – 400 kW

Energy release: 1 g H₂O - 105 W 1 g U-235 - 150 kW

Санкт-Петербург, 2022

Спектр нейтронов в ЦЭК и активной зоне реактора ПИК

PETERSBURG NUCLEAR PHYSICS INSTITUTE

Согласно концептуальному проекту реакторного комплекса ПИК ЦЭК предполагалось использовать для:

- Измерения магнитного момента нейтрино при помощи моноэнергетичного высокоинтенсивного источника нейтрино на основе ⁵¹Cr
- Наработки изотопов ²⁵⁴Es и ²⁵⁷Fm с использованием калифорниевой мишени
- Наработки редких изотопов для ядерной медицины

National Research Centre "Kurchatov Institute" PETERSBURG NUCLEAR PHYSICS INSTITUTE

HFIR

Central Experimental Channel PIK

Dimensions: Diameter – 40 mm; Lengths – 500 mm Volume – 630 cm³

Production of Cm heavy isotopes

Mass of Cm in discharged fuel: WWER-440 – 150 g/t; WWER-1000 – 200 g/t,

Isotopic composition of discharged WWER-1000 fuel (burnup – 60 GW/THM),

Isotope	Mass, g	Content, %	Content after 5
			years of decay,
			%
Cm-242	26,94	26,94	0,018
Cm-243	0,79	0,79	1,148
Cm-244	67,1	67,1	90,690
Cm-245	4,60	4,60	7,526
Cm-246	0,372	0,372	0,608
Cm-247	5,33.10-3	0,0053	0,009
Cm-248	3,25.10-4	0,00033	0,001

Облучение кюрия в ЦЭК реактора ПИК

Первоначальная масса кюрия – 1 грамм, Содержание изотопа ²⁴⁵Cm – 5% Основа – изотоп ²⁴⁴Cm

PETERSBURG NUCLEAR PHYSICS INSTITUTE

PETERSBURG NUCLEAR PHYSICS INSTITUTE

А

PETERSBURG NUCLEAR PHYSICS INSTITUTE

Наработка за 4 года: 34 мг ²⁴⁸Cm на 1 г сырьевого материла Дополнительно 27 мг ²⁵²Cf; 0.7 мг ²⁴⁹Bk

PETERSBURG NUCLEAR PHYSICS INSTITUTE

Схема превращений транскюриевых изотопов в интенсивном потоке нейтронов

PETERSBURG NUCLEAR PHYSICS INSTITUTE

Long term production of Cf isotopes at PIK

PETERSBURG NUCLEAR PHYSICS INSTITUTE

PETERSBURG NUCLEAR PHYSICS INSTITUTE

Production of Bk-249 isotope from Cm-248 in the CEC

Core height: PIK, HFIR \sim 50 cm, and SM-3 – 35 cm

PETERSBURG NUCLEAR PHYSICS INSTITUTE

Наработка в ЦЭК изотопа ²⁴⁹Вk из кюрия

Масса ²⁴⁸Ст в исходной мишени – 1 грамм

Изотопный состав:

PETERSBURG NUCLEAR PHYSICS INSTITUTE

Comparing of production rate of Cf isotopes in PIK and SM-3

Источники Нейтронного излучения

Тел.: +7 (495) 981-96-16 Адрес: 119435, Москва, ул. Погодинская, д.22 E-mail: isotop@isotop.ru Сайт: www.isotop.ru

2. Источники тип НК252М12

Мишень содержит 8.658 мг ²⁵²Cf Активность — 1.7·10¹¹ Бк Расчет показывает, что в ЦЭК за время одной кампании (25 суток) можно накопить порядка 2 µг изотопа ²⁵⁴Es

Онегин М.С. ВАНТ. Серия: Ядернореакторные константы. 2020, вып.1, стр.14

Флюенс в эксперименте "Пар" ~ 4,5·10²⁴ см⁻² (Phys.Rev.Lett. **14**, p.440 (1965)) Стартовый материал – U-238 Флюенс набранный в АЗ ПИК - 3,9·10²³ см⁻² (около 4 лет облучения ²⁴⁴Cm) Выход ²⁴⁶Cm на грамм – 0,051 Санкт-Петербург, 2022

Спасибо за внимание!