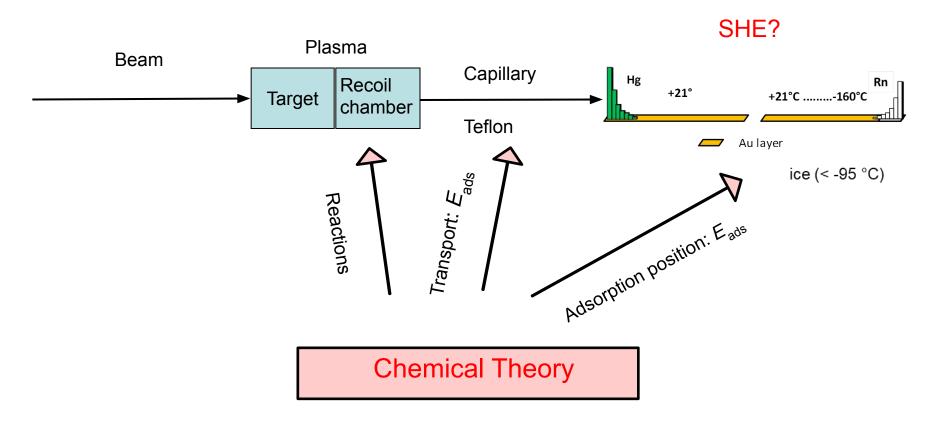
Adsorption properties of superheavy elements and their compounds on gold surface: periodic DFT calculations

> Anton Ryzhkov, Vladimir Shabaev St. Petersburg State University

V. Pershina, GSI, Darmstadt Miroslav Ilias, Matej Bel University, Slovakia

with the support of JINR, Dubna

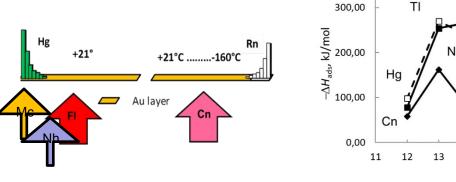
Superheavy Elements to be Chemically Studied


1										-							18
1												40		45	10	47	2
Н	2											13	14	15	16	17	He
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
11	12			_				-				13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	br	kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La→	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	Π	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Acၞ	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
:(119):(120):(121):																	
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		
Lanthanides -		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
		l							2				2				
Actinides 📫		90	91	92	93	94 Du	95	96	97	98	99	100	101	102	103		
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
Superactinides 🛨 (122 - 155)																	

Chemical separation is relatively slow technique – now SHE isotopes with $t_{1/2}$ > 1 s can be studied

V. Pershina, Dubna Meeting 2021

Gas-Phase Chromatography Experiments on SHEs at JINR, Dubna


Chromatography column

V. Pershina, Dubna Meeting 2021

Summary of Previous Studies on E_{ads} of M and MO on Au(111) Surface

- Previous studies
 - Hg/Cn, Tl/Nh,Pb/ Fl and Bi/Mc

Pb

14

V. Pershina. et al., *Inorg. Chem.* **60**, 9796 (2021)

15

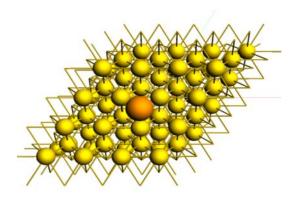
16

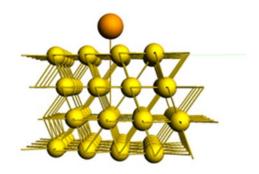
Bi

SHF calc.

nom. exp.

- Present work
 - Entire series of SHE and 6th row: Hg/Cn, Tl/Nh, Pb/Fl, Bi/Mc, Po/Lv, At/Ts, Rn/Og
 - hydrides BiH/McH, PoH/LvH, AtH/TsH, RnH/OgH
 - hydroxides AtOH/TsOH, RnOH/OgOH
- Work in progress
 - BiH₃/McH₃; PoH₂/LvH₂

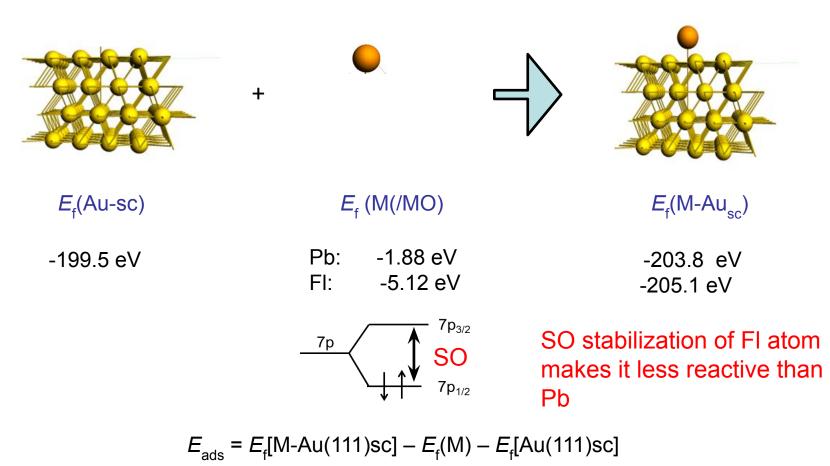

Method for Periodic Calculations


– SCM BAND

- 2 component: SR and SO relativity
- all electron
- STO basis sets till Z=120
- geometry optimization (up to 300 iterations)
- full relaxation
- various *E*^{xc} including dispersion-corrected
- checking all adsorption positions (hollow-2 is most stable)
 - (for molecules: Force Field method M. Ilias)
- commercial & host-locked

Modeling Gold Surface

- Modeling gold surfaces
 - calculating structure of gold bulk
 - Au(111) geometrical cut plane most stable
 - constructing the (4 x 4) supercell to avoid interaction of ad-atoms (for single species of SHEs)


"hollow-2" is most stable position

Periodic Calculations of E_{ads} (Pb/FI) on Au(111)

Au(111) s-cell

Atom/Molecule

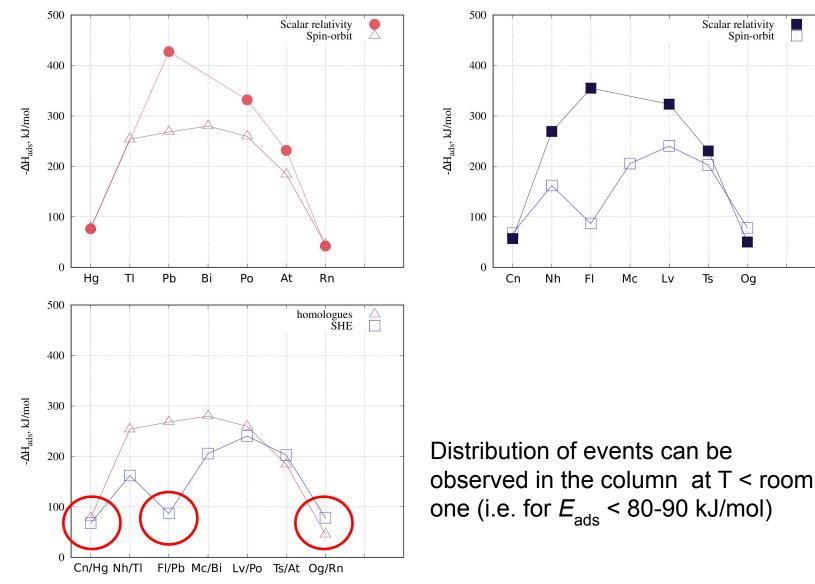
M/MO/Au-s-cell

V. Pershina, Dubna Meeting 2021

Results for $E_{ads}(M)$ for Hg/Cn - Rn/Og on Au(111) Surface

• Eads: SR and SO in comparison with ones from the [3]

Μ	SR	SO	SR [3]	SO [3]	М	SR	SO	SR [3]	SO [3]
	kJ/mol	kJ/mol	kJ/mol	kJ/mol		kJ/mol	kJ/mol	kJ/mol	kJ/mol
Hg	76.2	78.15	66.58	72.36	Cn	56.93	67.54	47.28	74.29
ΤI	-	253.76	279.81	231.57	Nh	269.19	162.10	281.74	141.83
Pb	427.43	268.23	358.93	271.12	FI	355.07	86.84	341.56	75.26
Bi	-	279.81	325.16	290.42	Мс	-	205.51	309.72	225.78
Po	331.91	259.55	338.66	267.26	Lv	323.23	240.25	329.02	242.18
At	231.56	184.29	237.35	189.11	Ts	230.60	202.62	250.86	211.30
Rn	42.16	45.43	30.86	34.73	Og	50.17	78.15	55.96	89.73

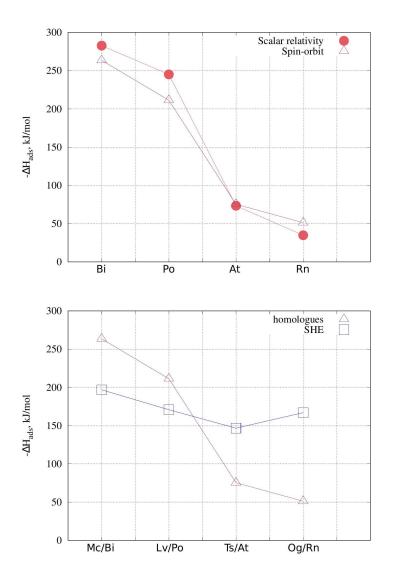

[1] Pershina, V.; Iliaš , M.; Yakushev, A. Inorg. Chem., 2021, 60, 9796-9804

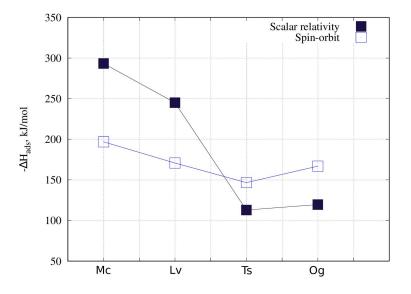
[2] Pershina, V. Inorg. Chem., 2018, 57, 3948-3955

[3] Trombach, S.; Ehlert, S.; Grimme, S.; Schwerdtfeger, P.; Jan-Michael Mewes. Phys. Chem. Chem. Phys., 2019, 21, 18048-18058

Og can be deposted on gold with $-\Delta H_{ads}$ = 89 kJ/mol (at the beginning of the column at room temperature)

Results for $E_{ads}(M)$ for Hg/Cn - Rn/Og

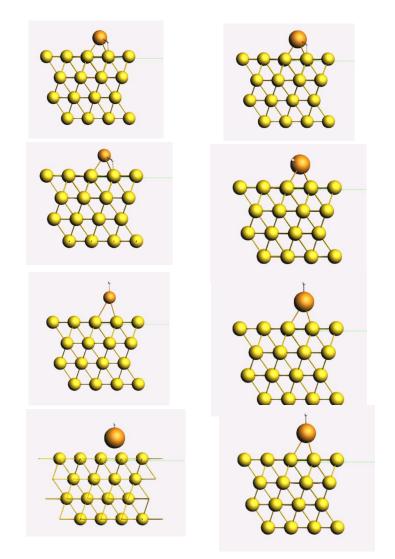

Formation of Compounds of SHEs


- Formation of MH and M(OH) in the atmosphere of $\rm O_2,\, H_2O$ and $\rm H_2$
 - Group 17:
 - Ts + O_2 = TsOO Ts + O = TsO TsO + H_2 = Ts + H_2O TsOO + H_2 = TsOH + OH
 - $TsOO + H_2 = TsO + H_2O$
 - Group 18:
 - $Og + O_2 = OgOO$ $OgOO + H_2 = OgO + H_2O$

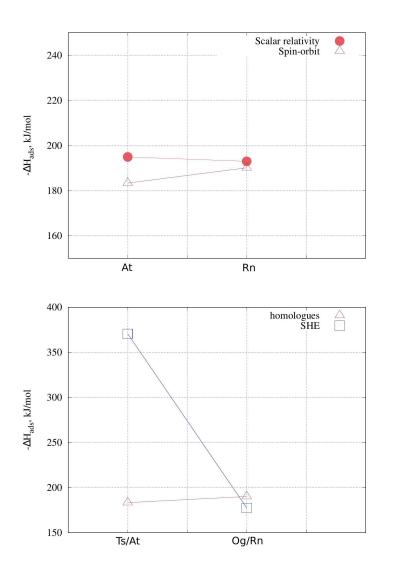
- Er = -0.302 eV
- Er = -2.748 eV
- Er = -2.691 eV
- Er = -0.832 eV
- Er = -1.949 eV

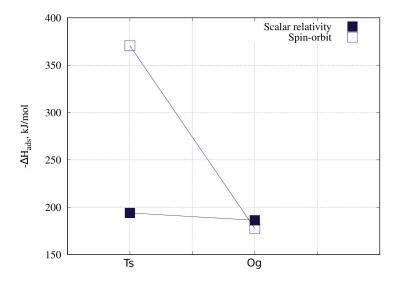
Er = -0.0034 eV Er = -0.454 eV

Adsorption of MH (M = Mc/Bi, Lv/Po, Ts/At, Og/Rn) on Au(111)



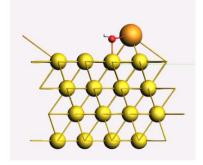
OgH should adsorb on gold much more strongly than RnH and Og: it should be possible to distinguish experimentally between Og and OgH by adsorption on gold


Geometrical Configurations of MH/Au(111)


- Group 15
 - BiH and McH
- Group 16
 PoH and LvH
- Group 17
 - AtH and TsH
- Group 18
 - RnH and OgH

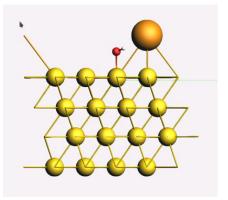
Different structures for group 15/16 and 17/18

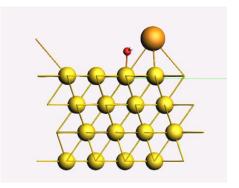
Adsorption of MOH (M = Ts/At, Og/Rn) on Au(111)


TsOH and OgOH adsorbs on gold much more strongly than TsH and OgH: E_{ads} are too big to observe distribution of events at room and lower temperatures.

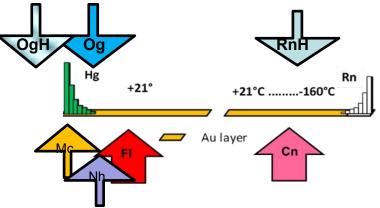
Explanation: ionic compounds interacting strongly with the surface

Geometrical Configurations of MOH (M = At/Ts and Rn/Og) on Au(111)


Group 17


AtOH and TsOH

<u>Group 18</u>


RnOH and OgOH

Conclusions for Experiments with Gold Surface of Detectors

- Distribution of events Hg/Cn, Fl and Rn/Og will be observed at room and lower temperatures in the column
- $E_{ads}(Og) \approx E_{ads}(Hg)$ at the beginning, while Rn at the cold end of it
- RnH will be observed at T_{ads} below zero, while OgH is much more reactive and should adsorb at the beginning of the column
- MOH (M = Ts and Og) are very reactive: ionic compounds
- For $-\Delta H_{ads} > 80-90$ kJ/mol, much higher T_{ads} are needed to observe a distribution of events

Acknowledgment of the Laboratory of Information Technologies of JINR