Газонаполненные сепараторы в экспериментах по синтезу и исследованию СТЭ Соловьев Д.И.

План

ГHC-2:

- Газонаполненный сепаратор дипольно-квадрупольной конфигурации
- Первая установка Фабрики СТЭ
- Тестовые эксперименты: 2019-2020
- Эксперименты по синтезу 115, 114, 112 и 110 элементов: 2020-2022 доклад Ибадуллаева Д.

GASSOL:

- Газонаполненный сепаратор на основе соленоидального сверхпроводящего магнита
- Завершено проектирование, идет поиск поставщиков
- Основная предполагаемая область применения опыты по изучению химических свойств СТЭ

Принцип работы газонаполненных сепараторов в экспериментах по изучению СТЭ

5-6 МэВ/ати ⁴⁸Ca + Актиноид -> 0.1-0.2 МэВ/ати ОИ + xn

 $\mathbf{F} = \mathbf{q}(\mathbf{E} + [\mathbf{v} \times \mathbf{B}])$

 σ_{capture} ОИ ≈ 10⁻¹⁶ см²

$$\sigma_{\text{capture}} \, {}^{48}\text{Ca} \approx 10^{-19} \, \text{cm}^2$$

	⁴⁸ Ca	ОИ
На выходе из мишени	≈ 17+	≈ 20+
В водороде	≈ 17+	≈ 6+

Конфигурация	Углы поворота	В*р _{тах} , Т*м	Дисперсия D1, мм/%Вр	Длина, м
$Q_v D_h Q_h Q_v D$	31.5%/10%	3.35	32.8	7.41

ГНС-2, мишень и система диф. откачки

Мишень радиусом 24 см из ²⁴²Pu с 12 двойными секторами. Площадь одного сектора 5.8 см²

Схема дифференциальной насосной системы. Слева направо: диафрагма для ER (D_R), вращающаяся мишень (T), диафрагма для пучка (D_p), четырехступенчатая система откачки. Сверху показаны длины (L) и диаметры (d) коллиматоров. Размеры даны в миллиметрах. Внизу указана скорость откачки насосов

ГНС-2, детекторная система

Схема детекторной системы DGFRS-2

- Площадь двусторонних стриповых кремниевых детекторов в фокальной плоскости 220х48 мм²
- 110 вертикальных стрипа толщиной
 2 мм, 48 горизонтальных стрипов
 толщиной 1 мм
- Энергетическое разрешение вертикальных стрипов (стандартное отклонение пика одной альфа линии) ≈ 20 кэВ
- 8 стриповых боковых детекторов
 60х120 мм², стрипы толщиной 15 мм
- Эффективность регистрации полной энергии альфа частицы ≈ 80%

Ионно-оптические особенности сепаратора ГНС-2

Взаимосвязь между оптимальными токами в Q2 и Q3

Тестовые реакции: ¹⁷⁰Er(⁴⁸Ca,4n)²¹⁴Ra, ¹⁷⁴Yb(⁴⁸Ca,5n)²¹⁷Th, ²⁰⁶Pb(⁴⁸Ca,2n)²⁵²No

- Значение тока в Q1 влияет только на эффективность транспортировки ядер и не влияет на размер изображения в фокальной плоскости.
- Для каждого значения тока в Q2 существует определенный локальный оптимум тока в Q3, при котором трансмиссия максимальна (локальный максимум трансмиссии).
- Если экспериментально определить несколько подобных оптимальных пар токов в Q2 и Q3, то обнаруживается линейная взаимосвязь между ними.
- Максимальная трансмиссия сепаратора достигается при таком соотношении токов в Q2 и Q3, которые находятся на данной линейной зависимости, и определяется как максимальная величина из набора локальных максимумов.

Сравнение результатов измерений и моделирования

Сравнение результатов измерений и моделирования

фокусировка по горизонтали, положительный – по вертикали 9

Характеристики сепаратора ГНС-2

горизонтального распределения; b) ширины вертикального распределения; c) эффективности сбора ОИ детектором размерами 220х48 мм².

10

Дисперсия, трансмиссия

Характеристики сепаратора ГНС-2

Реакция:²⁴³Am(⁴⁸Ca,2-3n)²⁸⁸⁻²⁸⁹Mc

			-
	DGFRS-1	DGFRS-2	
Толщина мишени, мг/см²	0,37	0,36	
Энергия ⁴⁸ Са, МэВ	243,4	243,9	
Доза пучка, 10 ¹⁸	3,3	8,0	
Число распадов ²⁸⁸ Мс	6	30	
Число распадов ²⁸⁹ Мс	0	5	
Фактор увеличения	1	<u> 2,3 ± 0,2</u>	Выход выше
эффективности			

Потери рекойлов по длине сепаратора

Схема установки для изучения химических свойств сверхтяжелых элементов

'^{perature}

Gas catcher

nom projece

Время транспортировки до детекторов = время обновления объема камеры + время пролета через капилляр + время пролета через детекторную сборку

Размеры изображения ОИ в фокальной плоскости ГНС-2

Реакция:²⁰⁶Pb(⁴⁸Ca,2n)²⁵²No

Конфигурация: $Q_v D_h Q_h Q_v D$

Трансмиссия: ≈ 60% для мишени 0.4 мг/см²

 σ_{x} = 70.1 MM σ_{y} = 12.9 MM

Реакция:¹⁷⁴Yb(⁴⁸Ca,5n)²¹⁷Th Конфигурация: Q_vD_hQ_vQ_hD Трансмиссия: ≈ 40% для мишени 0.4 мг/см²

 $\sigma_x = 26.0$ MM $\sigma_y = 27.0$ MM

Размер изображения на ГНС-2

- Сигмы изображения 27 мм по Х и по Ү
- Трансмиссия 40%
- Мишень 0.4 мг/см²
- Пучок 1 мкА-частиц
- Камера: цилиндр длиной 1 см
- Поток газа 1.8 л/мин

Изотоп	Сечение образования, пб	Период полураспада, мс
²⁸⁷ Fl	10	330
²⁸⁸ Mc	17	193
²⁹³ Lv	3.4	57
²⁹⁴ Ts	1.1	51

Схема работы установки GASSOL

- Импульс пучка и рекойлов одинаков
- Заряд пучка в газе примерно в 3 раза выше
- Фокусное расстояние для пучка ближе – ставим туда стоппер!

Расчетная модель

Расчетная модель GASSOL в Geant4

Результаты расчета

Начальные условия:

- Мишень 0.4 мг/см²
- Пучок 1 мкА-частиц
- Камера: цилиндр длиной 1 см
- Поток газа 1.8 л/мин

Результаты:

- Трансмиссия установки ≈ 70% до фокальной плоскости
- Изображение в оптимуме 1 сигма ≈4.6 мм
- Количество атомов в день на детекторах порядок выше, чем на ГНС-2

Результаты расчета

Изотоп СТЭ	²⁸⁷ FI	²⁸⁸ Mc	²⁹³ Lv	²⁹⁴ Ts	Ми
Оптимальный радиус камеры, см	1.1	0.9	0.7	0.6	Пуч Кал
Эффективность для данного радиуса	0.52	0.47	0.37	0.31	Пот
Объем камеры, см ³	3.8	2.5	1.5	1.1	
Время обновления объема камеры, с	0.127	0.08	<u>0.051</u>	<u>0.038</u>	На
Время транспортировки через капилляр, с	0.063	0.063	0.063	0.063	вре де ⁻ Те
Время пролета через детектор, с	0.11	0.11	0.11	0.11	дe
Полное время транспортировки, с	0.299	0.257	<u>0.224</u>	<u>0.21</u>	<u>се</u> дл
Период полураспада, с	0.360	0.193	<u>0.057</u>	<u>0.051</u>	
Число атомов в день в камере	2.81	4.24	0.66	0.18	Не
Число атомов в день на детекторах	1.58	1.68	0.044	0.010	ну

Мишень 0.4 мг/см² Пучок 1 мкА-частиц Камера: цилиндр длиной 1 см Поток газа 1.8 л/мин

Наибольшие затраты времени – капилляр и детекторы! Термохроматографический детектор малых размеров? <u>GSI: miniCOMPACT, 8 см в</u> <u>длину</u>

Необходима высокая интенсивность пучка – нужна мишень большой площади!

<u>Пучок:</u>

Большая часть пучка останавливается в стоппере.

Соленоид SOLITAIRE (Австралия): в реакции ³⁰Si+¹⁸⁶W в 1 см при пучке 10⁸ ионов/с счет был 100 ионов/с, исходя из этого, очистка на SOLITAIRE примерно 6 порядков. На GASSOL, таким образом, при пучке в 6*10¹³ ионов/с (~ 10 мкА-частиц) стоит ожидать не менее, чем 6*10⁷ ионов/с в камере радиусом 1 см. Основной источник фона - рассеянные ионы пучка.

Продукты передач:

Дают фон альфа-частиц и деления на криодетекторах - могут помешать идентификации сверхтяжелых элементов

Проблема очистки

Поле: 5,9 Тесла

Меняется магнитная жесткость (BR) частицы от 0.005 до 3 Т*м: хотим понять, с какими BR прилетят в камеру в хим. опытах

Моделирование 100 траекторий для BR = 0.6 Т*м

Принцип очистки

ω

qBt

qB

m

qBL

Частицы внутри соленоида поворачиваются за некоторую заданную длину на угол, обратно пропорциональный магнитной жесткости

1,000 1,500

500

0

Спиральный стоппер

Длина стоппера 500 мм, полный угол поворота одной лопасти 37°

Эскиз стоппера

Спиральный стоппер в расчетной модели 24

Результаты расчета

Турбина

- Дополнительный фактор подавления в 10⁶ для камеры радиусом 15 мм для частиц с магнитной жесткостью в диапазоне от 0.005 до 1.8 Т*м
- Полоса пропускания от 2 до 3 Т*м всё еще довольно широка

Число лопастей	Длина, мм	Полный угол поворота турбины, град	Потери ОИ при несмещенных отн. магнитопровода катушках	Потери ОИ при смещенных отн. магнитопровода на ±5 мм катушках
10	300	20.88	0.0947	0.1132
10	500	34.8	0.1075	0.1457
10	700	48.72	0.1285	0.1977
10	900	62.64	0.1657	0.2728
15	300	20.88	0.143	0.1669
15	500	34.8	0.1631	0.2183
15	700	48.72	0.1927	0.2945
20	300	20.88	0.1891	0.2226
20	500	34.8	0.2184	0.2926

DGFRS-2:

- Трансмиссия выше приблизительно в два раза в сравнении с DGFRS-1
- Степень подавления фона выше в 200 раз в сравнении с DGFRS-1
- В сочетании с интенсивностями пучка, достигаемыми на ускорителе DC-280, позволяет изучать реакции слияния в фемтобарновом диапазоне
- Размеры изображения в фокальной плоскости делают невозможным изучение химических свойств СТЭ с Z > 115

GASSOL:

- Высокая расчетная трансмиссия
- Малые расчетные размеры изображения
- Возможно изучение хим. свойств 116 и 117 методами газовой термохроматографии, если будут созданы устойчивые мишени и малая детекторная система
- Уровень подавления фоновых частиц неясен, может быть измерен только экспериментально
- Возможности по использованию для изучения многонуклонных передач
 будущие расчеты

ПРЕДВАРИТЕЛЬНЫЙ ПЛАН ИЗГОТОВЛЕНИЯ GASSOL

Спасибо за внимание!

Верификация расчета: соленоиды SOLITAIRE

Методы расчета. Сечения перезарядки.

Алгоритм основан на двух принципах:

1. Распределение зарядовых состояний в равновесном состоянии распределено по гауссу 2. Сечение захвата и потери электрона увеличиваются и убывают при удалении зарядового состояния от равновесного по экспоненте. Многоэлектронной перезарядкой пренебрежено

$$\sigma_{fit} = 8.77 \, \overline{q} \, * ex \, p \left(-0.0614 \, * rac{\mathsf{E}}{\overline{q}^{7}}
ight) \, - \, \phi$$
ит экспериментально полученных сечений

равновесного Для заряда сечение захвата электрона сечению потери равно не был бы иначе заряд равновесным

$$\begin{split} \sigma_{q,q-1} &= \sigma_{fit} exp \big(0.12(q-\bar{q}) \big) \\ \sigma_{q,q+1} &= \sigma_{fit} exp \big(0.12(\bar{q}-q) \big) \end{split}$$

Методы расчета. Сечения перезарядки.

 $\bar{q} = 3.26 * \nu / \nu_0 - 1.39$ $\nu_0 = 2.19 * 10^6 \text{ M/c}$ $\sigma_{fit} = 8.77 \ \overline{q} \ * ex \ p\left(-0.0614 \ * \frac{\mathsf{L}}{\overline{q^{7}}}\right)$ Для равновесного заряда сечение захвата электрона равно сечению потери иначе заряд не был бы равновесным

$$\begin{split} \sigma_{q,q-1} &= \sigma_{fit} exp \big(0.12(q-\bar{q}) \big) \\ \sigma_{q,q+1} &= \sigma_{fit} exp \big(0.12(\bar{q}-q) \big) \end{split}$$

Сравнение результатов измерений и моделирования

Моделирование траекторий ионов

Модели должна содержать в себе:

- 1. Моделирование образования составного ядра в слое мишени.
- 2. Оценка изменения энергии и направления импульса рекойлов за счет испарения нейтронов.
- 3. Расчет многократного рассеяния рекойла в мишени, объеме сепаратора, заполненного газом, входном майларовом окне и пентане, заполняющем камеру детекторов.
- 4. Расчет энергетических потерь в мишени и узлах сепаратора.
- 5. Моделирование перезарядки рекойла.
- 6. Расчет движения рекойла в магнитных полях установки.

Методы расчета. Распределение пучка

Моделирование начинается с разыгрывания параметров иона пучка:

- Z = 1 мм до мишени
- Х, Ү ~ гауссиан с сигмой 2.5 мм и средним 0
- Е ~ гауссиан с сигмой 0.3% от заданной энергии
- Импульс направлен перпендикулярно мишени

Ион пучка проходит через подложку мишени, рассеиваясь и теряя энергию.

Методы расчета. Модель испарения.

Равномерно по толщине мишени разыгрывается точка образования составного ядра. Затем:

 $\vec{p}_{CN}^{lab} = \vec{p}_{proj}$

$$E_{CN}^{*} = \frac{T_{proj} * A_{tar}}{A_{CN}} + \Delta_{proj} + \Delta_{tar} - \Delta_{CN}$$

Процесс испарения:

$t = \sqrt{E_{CN}^*/10}$	
$P(T_n) = \frac{1}{t^2} T_n e^{-T_n/t}$	
$\Delta E_{CN}^* = T_n + E_n^{bind}$	
$E_{CN}^* = E_{CN}^* - \Delta E_{CN}^*$	
$\vec{p}_{CN}^{lab} = \vec{p}_{CN}^{lab} - (\vec{p}_n^{cm} +$	$m_n * \vec{v}_{CN}$

E_{CN}^*	Энергия возбуждения СЯ
Δ	Дефект масс
\vec{p}_{CN}^{lab}	Импульс СЯ в лаб. сист.
t	Температура ядра
T_n	Кин. энергия нейтрона
E_n^{bind}	Энергия связи нейтрона СЯ

Если $E_{CN}^* > E_n^{bind}$ - процесс испарения начинается заново, если $E_{CN}^* < E_n^{bind}$ - процесс испарения считается завершенным.

Методы расчета. Многократное рассеяние.

$$V(r) = \frac{Z_1 Z_2 e^2}{r} \varphi\left(\frac{r}{a}\right),$$

где Z_1 и Z_2 - число протонов в ядрах рассеивающихся атомов e^2 – константа электромагнитного взаимодействия r – расстояние между ядрам φ – функция экранирования, используется функция Зиглера-Бирсака-Литтмарка (TRIM)

Методы расчета. Потери энергии.

$$\frac{dE}{dx} = 2\pi r_e^2 mc^2 n_{el} \frac{z^2}{\beta^2} \left[\ln\left(\frac{2mc^2\beta^2\gamma^2 T_{up}}{I^2}\right) - \beta^2 \left(1 + \frac{T_{up}}{T_{max}}\right) - \delta - \frac{2C_e}{Z} + S + F \right]$$

Используемая в Geant4 формула Бете-Блоха с различными поправками 38

Методы расчета. Траектории в магнитном поле

- Карты полей были рассчитаны инженерами Нева-Магнит
- Используются встроенные в GEANT4 методы численного интегрирования уравнений движения

-

- Выбрана одна из схем метода Рунге-Кутта схема Дормунда-Принса
- GEANT4 позволяет настраивать точность интегрирования с помощью следующих параметров:

DeltaOneStep – примерная ошибка определения положения координаты частицы на шаге интегрирования

EpsilonMin – минимальная допустимая относительная ошибка интегрирования

EpsilonMax – максимальная допустимая относительная ошибка интегрирования

Сравнение результатов измерений и моделирования

Особенности настройки сепаратора DGFRS-2:

- Магнитная жесткость в обоих диполях должна быть выставлена одинаковой
- Первый квадруполь не влияет на размер изображения в фокальной плоскости, а только на эффективность
- Второй и третий квадруполи определяют размер изображения
- Соотношение оптимальных токов между двумя квадруполями линейно
 Для анализа экспериментальных данных написаны программы на основе фреймворка ROOT

