Предсказание энергий 2₁⁺ состояний сверхтяжелых ядер

Лаборатория теоретической физики им. Н.Н.Боголюбова, ОИЯИ, Дубна

Н.Ю. Ширикова, А.В. Сушков,Л.А. Малов, Е.А. Колганова,Р.В. Джолос

7 июля 2022, Санкт-Петербург

Базисные элементы структуры атомных ядер. Низколежащие состояния.

- Четно-четные ядра: коллективные моды возбуждения вращение, колебания
- Нечетные ядра: Коллективные возбуждения + квазичастицы
- Энергия возбуждения 2⁺ состояния важнейшая характеристика формы ядра

L.Grodzins, Phys. Lett. 2 (1962) 88

Grodzins Relation

В 1962 году L.Grodzins проанализировал зависимость вероятности E2 перехода $0_1^+ \rightarrow 2_1^+$ от энергии перехода. Он обнаружил, опираясь на экспериментальную информацию о 126, известных на тот момент Е2 переходах, что произведение $E(2_1^+) \times B(E2; 0_1^+ \rightarrow 2_1^+)$ изменяется как плавная функция А и Z. Это свойство не зависит от того, является ли ядро сферическим или деформированным, т.е. произведение не испытывает никаких "скачков" при переходе от сферических ядер к деформированным, хотя обе величины, и $E(2_1^+)$ и $B(E2; 0_1^+ \rightarrow 2_1^+)$ изменяются при этом значительно.

Grodzins Relation

$E(2_1^+) \times B(E2; 0_1^+ \to 2_1^+) = 2.57(45)Z^2A^{-2/3}$

 $E(2_1^+)$ is given in keV and $B(E2; 0_1^+ \rightarrow 2_1^+)$ in e^2b^2

Соотношение Гродзинса

Деформированные ядра:

$$\begin{split} E_{def}(2_1^+) &= \frac{3\hbar^2}{\Im}, \quad \Im = 3B_2\beta_2^2\\ B(E2; 0_1^2 \to 2_1^+)_{def} &= \left(\frac{3}{4\pi}ZeR_0^2\right)^2\beta_2^2\\ E_{def}(2_1^+) \times B(E2; 0_1^2 \to 2_1^+)_{def} \sim \frac{\hbar^2}{B_2} \left(\frac{3}{4\pi}ZeR_0^2\right)^2 \end{split}$$

Сферические ядра:

$$\begin{split} E_{sph}(2_{1}^{+}) &= \hbar \sqrt{\frac{C_{2}}{B_{2}}}, \\ B(E2; 0_{1}^{2} \to 2_{1}^{+})_{sph} &= \left(\frac{3}{4\pi} ZeR_{0}^{2}\right)^{2} \frac{\hbar}{\sqrt{B_{2}C_{2}}} \\ E_{sph}(2_{1}^{+}) \times B(E2; 0_{1}^{2} \to 2_{1}^{+})_{sph} \sim \frac{\hbar^{2}}{B_{2}} \left(\frac{3}{4\pi} ZeR_{0}^{2}\right)^{2} \end{split}$$

Модель жидкой капли. Безвихревое движение ядерной жидкости.

$$B_2 = \frac{3}{8\pi} Am R_0^2, \qquad R_0 = r_0 A^{1/3}$$

$$E(2_1^+) \times B(E2; 0_1^+ \to 2_1^+) = 5.96 \frac{(eZ)^2}{A^{1/3}} b^2 \cdot keV$$

L.Grodzins, Phys. Lett. 2 (1962) 88

Grodzins Relation

Значение коэффициента пропорциональности соотношении Гродзинса было детально B проанализировано в ряде работ, основываясь на более полном наборе экспериментальных данных (вплоть до 2017 г.). Результаты анализа показали, что коэффициент пропорциональности несколько варьируется при переходе от одной группы ядер к другой. Это означало, что необходим теоретический вывод соотношения, основанный на существующей модели ядра

L.Grodzins, Phys. Lett. **2** (1962) 88 R.V.Jolos, E.A.Kolganova, Phys. Lett. B 820 (2021) 136581

Grodzins Relation

The collective quadrupole Bohr Hamiltonian

$$H = -\frac{\hbar^2}{2} \sum_{\mu,\mu'} \frac{\partial}{\partial \alpha_{2\mu}} (B^{-1})_{\mu\mu'} \frac{\partial}{\partial \alpha_{2\mu'}} + V(\alpha_{2\mu}),$$

where the inverted inertia tensor

$$(B^{-1})_{\mu\mu\prime} = \sqrt{5} \sum_{LM} C^{LM}_{2\mu2\mu\prime} (B^{-1})_{LM}$$

using the ground state average of the double commutator

$$\left[\left[H, Q_{2\mu} \right], Q_{2\mu'} \right] = -\hbar^2 q^2 \sqrt{5} \sum_{LM} C_{2\mu 2\mu'}^{LM} (B^{-1})_{LM}$$

with $q = \frac{3}{4\pi} e Z r_0^2 A^{2/3}$

L.Grodzins, Phys. Lett. **2** (1962) 88 R.V.Jolos, E.A.Kolganova, Phys. Lett. B 820 (2021) 136581 R.V.Jolos, P. von Brentano, Phys. Rev. C **76** (2007) 024309

Grodzins Relation

The collective quadrupole Bohr Hamiltonian

 $E(2_1^+) \times B(E2; 0_1^+ \to 2_1^+) = \hbar^2 q^2 \langle 0_1^+ | (B^{-1})_{00} | 0_1^+ \rangle$

$$(B^{-1})_{00}^{in} = \frac{2}{5} \frac{1}{B_{rot}} + \frac{2}{5} \frac{1}{B_{\gamma}} + \frac{1}{5} \frac{1}{B_{\beta}}$$

 B_{rot} , B_{γ} , B_{β} - the inertia coefficients for rotational, γ and β motions.

$$B(E2; 0_1^+ \to 2_1^+) = \left(\frac{3}{4\pi} eZR_0^2\right)^2 \beta_2^2$$

L.Grodzins, Phys. Lett. 2 (1962) 88

R.V.Jolos, E.A.Kolganova, Phys. Lett. B **820** (2021) 136581 N.V.Shirikova *et al.*, Phys. Rev. C **105** (2022) 024309

Grodzins Relation

As a result

$$E(2_{1}^{+}) = \hbar^{2} \frac{1}{\beta_{2}^{2}} \left(\frac{2}{5} \frac{1}{B_{rot}} + \frac{2}{5} \frac{1}{B_{\gamma}} + \frac{1}{5} \frac{1}{B_{\beta}} \right)$$

$$B_{rot} = \alpha \sum_{s,t} \frac{|\langle s| \frac{dV}{dr} \frac{1}{\sqrt{2}} (Y_{21} + Y_{2-1})|t\rangle|^{2} (\varepsilon_{s}\varepsilon_{t} - (E_{s} - \lambda)(E_{t} - \lambda) - \Delta_{s}\Delta_{t})}{2\varepsilon_{s}\varepsilon_{t}(\varepsilon_{s} + \varepsilon_{t})^{3}},$$

$$B_{\gamma} = \alpha \sum_{s,t} \frac{|\langle s| \frac{dV}{dr} \frac{1}{\sqrt{2}} (Y_{22} + Y_{2-2})|t\rangle|^{2} (\varepsilon_{s}\varepsilon_{t} - (E_{s} - \lambda)(E_{t} - \lambda) + \Delta_{s}\Delta_{t}) (\varepsilon_{s} + \varepsilon_{t})}{2\varepsilon_{s}\varepsilon_{t}((\varepsilon_{s} + \varepsilon_{t})^{2} - \omega_{\gamma}^{2})^{2}},$$

$$B_{\beta} = \alpha \sum_{s,t} \frac{|\langle s| \frac{dV}{dr} Y_{20}|t\rangle|^{2} (\varepsilon_{s}\varepsilon_{t} - (E_{s} - \lambda)(E_{t} - \lambda) + \Delta_{s}\Delta_{t}) (\varepsilon_{s} + \varepsilon_{t})}{2\varepsilon_{s}\varepsilon_{t}((\varepsilon_{s} + \varepsilon_{t})^{2} - \omega_{\beta}^{2})^{2}},$$

where s and t are the quantum numbers of the single particle states, $E_{s(t)}$ - the single particle energy, $\varepsilon_{s(t)}$ - the single quasiparticle energy, λ - the Fermi level energy, $\Delta_{s(t)}$ - the pairing gap, $\omega_{\beta}(\omega_{\gamma})$ - the energy of the β (γ) phonon, $Y_{\lambda\mu}$ - the spherical function. $\alpha = 2\hbar^2 r_0^2 A^{2/3}$

Коэффициент пропорциональности

Если

$$\Delta = \frac{12}{\sqrt{A}}$$
 МэВ
 $g = \frac{3A}{2\epsilon_F}$ - параметр плотности одночастичных
уровней, то
 $E(2_1^+) \times B(E2; 0_1^+ \to 2_1^+) = 2.9 \frac{Z^2}{A^{2/3}}$

The predicted energies of the 2^+_1 states.

Calculations are based on the microscopic variant of the Grodzins relation. The variants [A] is calculated with the parameters obtained using Strutinsky procedure. The variants [Moller] is calculated with deformation parameters taken from the Table of P.Möller, et al.

Nucleus	β2 [A]	E(21+) (keV)	β₂ [Moller]	E(21+) (keV)
²⁵⁶ Fm	0.279	44	0.240	66
²⁶⁰ No	0.287	42	0.242	57
²⁶⁴ Rf	0.275	43	0.232	70
²⁶⁸ Sb	0.263	34	0.232	38
²⁷² Hs	0.231	75	0.221	76
²⁷⁶ Ds	0.232	89	0.210	101
²⁸⁰ Cn	0.181	86	0.086	507
²⁸⁴ Fl	0.139	217	0.064	934
²⁸⁸ Lv	-0.137	202	0.075	433
²⁹² Og	0.083	532	0.075	480
²⁹⁶ 120	-0.102	176	0.075	384

Prediction of the excitation energies of the first 2⁺ states for superheavy nuclei

Phys. Rev. C 105, 024309 (2022)

Prediction of the excitation energies of the first 2⁺ states for superheavy nuclei

Phys. Rev. C 105, 024309 (2022)

Fig.2: The predicted energies of the 2_1^+ states for different nuclei. Calculations are performed for the microscopic variant [A] (black) and phenomenological Grodzins relations $E(2_1^+)_{max}$ (red) and $E(2_1^+)_{min}$ (blue).

R.V.Jolos, P. von Brentano, Phys. Rev. C **76** (2007) 024309; Phys. Rev. C **77** (2008) 064317; Phys. Rev. C **78** (2008) 064309

Model

- B_{rot} : the single particle level scheme and the monopole pairing
- B_{β} and B_{γ} : the residual forces => energies of the γ and β vibrations

Deformed nuclei:
$$\frac{B_{\gamma}}{B_{rot}} = 4 \text{ and} \frac{B_{\beta}}{B_{rot}} = 12 \rightarrow E(2^+_1) = \frac{0.52\hbar^2}{\beta_2^2} B_{rot}$$

Spherical nuclei:
$$\frac{B_{\gamma}}{B_{rot}} = \frac{B_{\beta}}{B_{rot}} = 1 \rightarrow E(2_1^+) = \frac{\hbar^2}{\beta_2^2} B_{rot}$$

 $0.16 < \beta_2 < 0.20 \qquad \qquad E(2_1^+) = \frac{0.76\hbar^2}{\beta_2^2} B_{rot}$

The predicted energies of the 2_1^+ states.

Calculations are based on the microscopic variant of the Grodzins relation (fourth column) and on the relations based on the values of B_{rot} (fifth column).

Nucleus	β 2	β 4	E(2 ⁺ ₁) (keV)	$E(2_{1}^{+})$ (keV)
²⁵⁸ Fm	0.274	0.014	51	47
²⁶² No	0.256	-0.013	51	48
²⁶⁶ Rf	0.235	-0.039	70	54
²⁷⁰ Sb	0.242	-0.045	60	47
²⁷⁴ Hs	0.237	-0.070	74	44
²⁷⁸ Ds	0.197	-0.065	66	121
²⁸² Cn	0.160	-0.062	102	246
²⁸⁶ FI	-0.154	0.012	144	246
²⁹⁰ Lv	0.078	0.000	431	316
²⁹⁴ Og	-0.105	-0.001	242	456
²⁹⁸ 120	-0.092	-0.006	335	442

Results

Заключение

На основе микроскопического варианта соотношения Гродзинса, полученного, основываясь на коллективном гамильтониане Бора и микроскопической модели ядра, предсказаны энергии возбуждения 2⁺ состояний цепочки четно-четных сверхтяжелых ядер с Z от 100 до 120.

Расчеты выполнены с использованием квадрупольных и гексадекапольных параметров деформации, рассчитанных по методу Струтинского.

Полученные результаты показывают, что в начале исследуемой области ядер, где квадрупольная деформация велика, энергии 2⁺₁ состояний не превышают 80 кэВ, т.е. соответствуют состояниям вращения. Затем с уменьшением деформации E(2⁺₁) резко возрастают и достигают максимального значения у ²⁸⁴Fl или ²⁹²Og для одной цепочки ядер, или у ²⁹⁴Og или ²⁹⁰Lv для другой цепочки в зависимости от варианта используемого соотношения Гродзинса.

Gamma-transitions between low-lying nonrotational states of odd-neutron nuclei in alpha-decay chains starting from ^{265,267,269}Hs.

L.A.Malov, A.N.Bezbach, G.G.Adamian, N.V.Antonenko, and R.V.Jolos

Аннотация.

- Рассчитаны квазичастично-фононная структура и приведенные вероятности гамма-переходов в нечетно-нейтронных ядрах ^{265,267,269}Hs, ^{261,263,265}Sg, ^{257,259,261}Rf, ^{253,255,257}No, и ^{249,251,253}Fm.
- Проанализированы цепочки альфа-распада изотопов ^{265,267,269}Hs.

Alpha-decay chain starting from ²⁶⁹Hs. ²⁶⁹Hs - ²⁶⁵Sg - ²⁶¹Rf - ²⁵⁷No - ²⁵³Fm

²⁶⁹Hs - ²⁶⁵Sg - ²⁶¹Rf - ²⁵⁷No - ²⁵³Fm

FIG. 2: Possible α -decay chains starting from ²⁶⁹Hs.

²⁶⁵Sg

Заключение.

- Выполнены систематические расчеты спектров возбуждения, структуры волновых функций и вероятностей гамма-переходов для ряда нечетно-нейтронных ядер с Z=100, 102-108.
- Деформация основного состояния рассчитывалась для каждого из исследуемых ядер.
- Рассчитанные вероятности гамма-переходов позволяют найти в спектре возбуждения изомерные состояния и оценить их времена жизни.

Заключение (продолжение)

- Высокая плотность спектра одноквазичастичных состояний увеличивает как число возможных путей альфа-распада, так и вероятность появления изомерных состояний.
- В цепочках альфа-распада ^{267,269}Hs ядра с Z=108,106,104 и 102 могут иметь две линии альфа-распада.
- Ядра ²⁶⁵Hs и ²⁶¹Sg могут иметь три линии альфараспада.

Acknowledgments

The authors acknowledge support by the Ministry of Education and Science (Russia) under Grant No. 075-10-2020-117.

