

Экзотические ядерные системы:

атомные ядра и гиперядра вблизи границы существования ядер, материя нейтронных звезд

Т.Ю. Третьякова НИИЯФ МГУ

Совет РАН по физике тяжелых ионов

Санкт-Петербург, 5 Июля 2022

Проект «Ядерная астрофизика»

НИИЯФ МГУ, физический факультет МГУ

(теоретическая часть)

• Нуклонные и гиперонные взаимодействия в экзотических ядерных системах

• Определение границ ядерного континента и моделирование r-процесса звездного нуклеосинтеза

<u>Научные сотрудники:</u>
Д.Е. Ланской
Т.Ю. Третьякова
К.А. Стопани
Е.В. Владимирова

Аспиранты и студенты: С.В. Сидоров М.С. Хирк С.А. Михеев В.В. Негребецкий М.В. Симонов Т.Р. Алиев А.С. Корнилова И.А. Мостаков А.И. Насакин

Экзотические ядерные системы

- Легкие Л-гиперядра с протонным и нейтронным избытком
- Нейтрон-избыточные ядра и моделирование r-процесса
- Предсказание масс сверхтяжелых элементов
- Нейтронные звезды

Strange matter

Sidorov, Lanskoy, Tretyakova PoS (PANIC2021)216

Обозначения:

• А -- Полное число барионов (нуклоны & гиперон)

 ΛL

- Z -- Заряд
- Λ -- гиперон (другие: Σ, Ξ, ...)

Мотивация: Новые экспериментальные возможности синтеза экзотических гиперядер в реакциях столкновения тяжелых ионов

Цель: Определение сдвига границы существования гиперядер по сравнению с протонизбыточными ядрами в диапазоне $5 \le Z \le 8$

- Стабильность нуклонного остова по отношению к испусканию нуклонов гарантирует существование гиперядра
- Л-гиперон может дополнительно связывать нуклонный остов
- Притягивающее ЛО-взаимодействие может привести к связыванию изотопов за границей протонной стабильности
- **PROTON DRIP-LINE:**

$$S_p \begin{pmatrix} A \\ \Lambda Z \end{pmatrix} = S_p \begin{pmatrix} A-1 \\ Z \end{pmatrix} + B_{\Lambda} \begin{pmatrix} A \\ \Lambda Z \end{pmatrix} - B_{\Lambda} \begin{pmatrix} A-1 \\ \Lambda (Z-1) \end{pmatrix},$$

$$S_{2p} \begin{pmatrix} A \\ \Lambda Z \end{pmatrix} = S_{2p} \begin{pmatrix} A-1 \\ Z \end{pmatrix} + B_{\Lambda} \begin{pmatrix} A \\ \Lambda Z \end{pmatrix} - B_{\Lambda} \begin{pmatrix} A-2 \\ \Lambda (Z-2) \end{pmatrix}.$$

Легкие экзотические Λ гиперядра Подход Скирма-Хартри-Фока

Нуклон-нуклонный потенциал Скирма (Vautherin and Brink, 1972):

$$V_{NN}(\mathbf{r_1}, \mathbf{r_2}) = t_0 (1 + x_0 P_{\sigma}) \delta(\mathbf{r_{12}}) + \frac{1}{2} t_1 (1 + x_1 P_{\sigma}) (\mathbf{k}'^2 \delta(\mathbf{r_{12}}) + \delta(\mathbf{r_{12}}) \mathbf{k}^2) + t_2 (1 + x_2 P_{\sigma}) \mathbf{k}' \delta(\mathbf{r_{12}}) \mathbf{k} + \frac{1}{6} t_3 \rho^{\alpha}(\mathbf{R}) (1 + x_3 P_{\sigma}) \delta(\mathbf{r_{12}}) + iW(\sigma_1 + \sigma_2) [\mathbf{k}' \times \delta(\mathbf{r}) \mathbf{k}]$$

 $B_{\Lambda}, \mathrm{MeV}$

NN: SLy4, SkM*, SkIII

• Гиперон-нуклонный потенциал Скирма (Rayet, 1981):

$$V_{\Lambda N}(\boldsymbol{r}_{\Lambda}, \boldsymbol{r}_{\boldsymbol{q}}) = t_{0}^{\Lambda} (1 + x_{0}^{\Lambda} P_{\sigma}) \delta(\boldsymbol{r}_{\Lambda \boldsymbol{q}}) + \frac{1}{2} t_{1}^{\Lambda} (\boldsymbol{k}^{2} \delta(\boldsymbol{r}_{\Lambda \boldsymbol{q}}) + \delta(\boldsymbol{r}_{\Lambda \boldsymbol{q}}) \boldsymbol{k}'^{2}) + t_{2}^{\Lambda} \boldsymbol{k}' \delta(\boldsymbol{r}_{\Lambda \boldsymbol{q}}) \boldsymbol{k} + \frac{1}{6} t_{3}^{\Lambda} \rho^{\alpha}(\boldsymbol{R}) \delta(\boldsymbol{r}_{\Lambda \boldsymbol{q}})$$

AN: SLL4, SLL4' (Schulze and Hiyama, 2014), YBZ5 (Yamamoto et al, 1988), LY1, LY5 (Lanskoy and Yamamoto, 1997), SkSH1 (Fernandez et al, 1989)

$$B_{\Lambda} \begin{pmatrix} A+1 \\ \Lambda Z \end{pmatrix} = B_{tot} \begin{pmatrix} A+1 \\ \Lambda Z \end{pmatrix} - B_{tot} \begin{pmatrix} A \\ Z \end{pmatrix}$$

Энергия отделения 2р в $^{9}_{\Lambda}$ С

В то время как ${}^{8}C$ распадается с испусканием 4 протонов, для ${}^{9}C$ критическим является канал распада с испусканием 2р и образованием ${}^{7}_{\Lambda}Be$. Слева представлена величина

как функция B_{Λ} в ${}_{\Lambda}^{9}$ В и ${}_{\Lambda}^{9}$ Li для разных NN и ЛN взаимодействий Скирма. Чем лучше описываются $B_{\Lambda} ({}_{\Lambda}^{9}$ B) и $B_{\Lambda} ({}_{\Lambda}^{9}$ Li), тем больше энергия отделения 2р в ${}_{\Lambda}^{9}$ C. Таким образом $S_{2p} ({}_{\Lambda}^{9}$ C) > 0.

⁹С связано!

Энергия отделения 2р в $^{13}_{\Lambda}O$

¹²О распадается с испусканием 2 протонов $(S_{2p}(^{12}O) = -1,638 \text{ MeV})$, поэтому можно ожидать, что так же распадается $^{13}_{\Lambda}O$. Слева: $S_{2p}(^{13}_{\Lambda}O) = S_{2p}(^{12}O) + B_{\Lambda}(^{13}_{\Lambda}O) - B_{\Lambda}(^{11}_{\Lambda}C)$ ехр f calc f

как функция $B_{\Lambda} \begin{pmatrix} 13 \\ \Lambda C \end{pmatrix}$. Большая часть результатов согласуется с экспериментальной энергией связи гиперона в ${}^{13}_{\Lambda}$ C.

 $^{13}_{\Lambda}$ О не связано

 $^{8}_{\Lambda}$ В, $^{12}_{\Lambda}$ N также не связаны

Гиперядра с двойной странностью. Энергия отделения 2р в $^{14}_{\Lambda\Lambda}O$

 $S_{2p}({}^{14}_{\Lambda\Lambda}0) = S_{2p}({}^{12}0)$ + $B_{\Lambda\Lambda}({}^{14}_{\Lambda\Lambda}0) - B_{\Lambda\Lambda}({}^{12}_{\Lambda\Lambda}C)$ са как функция $B_{\Lambda}({}^{13}_{\Lambda}C)$ для разных NN и ЛN взаимодействий Скирма. Ранее мы

пришли к выводу, что ${}^{13}_{\Lambda}$ О не связан; добавление второго гиперона досвязывает гиперядро.

 $^{14}_{\Lambda\Lambda}$ О связано!

Массы неизвестных ядер и нуклеосинтез

Negrebetskiy, Vladimirova, Simonov, Stopani, Tretyakova PoS (PANIC2021)333

Метод локальных массовых соотношений

Массовое соотношение для оценки остаточного *пр*-взаимодействия:

$$\Delta_{np}(Z,N) = S_{np}(Z,N) - [S_p(Z,N-1) + S_n(Z-1,N)] = = [B(Z,N) - B(Z,N-1)] - [B(Z-1,N) - B(Z-1,N-1)]$$

Предсказываемая энергия связи (1 из 4 возможных формул):

381

298

715

791

СПб, 5 июля 2022

Результаты: сверхтяжелые элементы

AME2020: Wang et al. Chinese Phys. C 45, 030003 (2021). **FRDM**: Moller P. et al., ADNDT. 59. 185 (2016) Система уравнений нуклеосинтеза:

 Y_i - концентрации изотопов (> 7500 нуклидов) λ_k - скорости реакций (~ 10⁵ процессов)

Скорость реакции нейтронного захвата

$$\lambda(T) = \sqrt{\frac{8}{\pi m}} \frac{N_A}{(kT)^{3/2} G(T)} \int_0^\infty \sum_\mu \frac{(2I^\mu + 1)}{(2I^0 + 1)} \sigma^\mu(E) E \exp\left(-\frac{E + E_x^\mu}{kT}\right) dE$$

Влияние выбора массовой модели на скорости (n, *y*) реакций

Оценка скоростей реакций (*n*, *y*) на нейтронноизбыточных изотопах

Результаты: применение оценок энергий для астрофизических расчетов

WS+RBF: Na-Na Ma et al. Chinese Phys. C. 43 (2019) **HFB-24**: Goriely S. et al. Phys. Rev. Lett. 102. 152503 (2015)

Михеев, Ланской, Насакин, Третьякова ЯДРО 2022, Москва

СПб, 5 июля 2022

- Нейтронные звезды компактные объекты, появляющиеся в результате гравитационного коллапса массивных звезд (8 M_S < M < 25 M_S) в ходе вспышки сверхновой
 - Macca: M ~ 1 2 M_s (большая часть наблюдений 1.4 M_s)
 - Радиус: R ~ 10 12 km
 - Плотность: р ~ 10¹⁴ 10¹⁵ г/см³
 - Массовое число: N_b ~ 10⁵⁷ ("гигантское (гипер) ядро")
- В основном наблюдаются как радиопульсары (известно > 2500)
- Массы измеряются для звёзд в двойных системах (10%)
- Верхняя граница для массы нейтронной звезды должна быть **M > 2Мs**
 - J0740+6620: $M = 2.14 \pm 0.10 M_s$ [Cromartie et al. 2020]
 - PSR J0348+0432: M = 2.01 \pm 0.04 M_s [Antoniadis et al. 2013]
 - PSR J164-2230: $M = 1.93 \pm 0.02 M_s$ [Demorest et al. 2010]
- измерен сигнал от слияния двух нейтронных звёзд (GW170817): оценка приливной деформируемости, сигнал r-процесса

Полная энергия и плотность энергии

$$E = \langle \phi | T + V | \phi
angle = \sum_{i} \langle i | T_{i} | i
angle + \frac{1}{2} \sum_{i,j} \langle i j | V_{ij} | i j
angle + \frac{1}{6} \sum_{i,j,k} \langle i j k | V_{ijk} | i j k
angle = \int H dr$$

Энергия на нуклон $\varepsilon(Y_{p}, n) = \frac{E}{A} = \frac{H}{n}$: Давление $p = n^{2} \frac{d\varepsilon}{dn}$

Химическое равновесие

$$\begin{split} \nu_{\ell} + n \rightleftharpoons p + \ell^{-}, & \mu_{i} = \frac{\partial H}{\partial n_{i}} \qquad i = n, p, \Lambda \\ \bar{\nu}_{\ell} + p \rightleftharpoons n + \ell^{+}, & \mu_{e} = \sqrt{m_{e}^{2} + (3\pi^{2}Y_{e}n)^{2/3}} \end{split}$$

$$\begin{cases} \mu_p(Y_p, Y_\Lambda) + \mu_e(Y_e) = \mu_n(Y_p, Y_\Lambda) \\ \mu_\mu(Y_p, Y_e) = \mu_e(Y_e) \\ \mu_\Lambda(Y_p, Y_\Lambda) + m_\Lambda = \mu_n(Y_p, Y_\Lambda) + m_n \end{cases}$$

$$\mu_{\mu} = \sqrt{m_{\mu}^2 + (3\pi^2 Y_{\mu} n)^{2/3}}$$

Уравнение Оппенгеймера-Волкова

$$\begin{aligned} \frac{dP}{dr} &= \frac{G}{r^2} \frac{[\rho(r) + P(r)/c^2][m(r) + (4\pi r^3 P(r)/c^2)]}{1 - (2Gm(r)/r\epsilon} \\ \frac{dm}{dr} &= 4\pi r^2 \rho(r) \\ M &= \int_0^R 4\pi r^2 \rho dr \end{aligned}$$

R

Hyperon puzzle

Адронная материя в нейтронных звездах Приливная деформируемость

Коэффициент приливной деформируемости определяется как коэффициент пропорциональности между внешним гравитационным полем и квадрупольным моментом самой звезды:

$$Q_{ij} = -\lambda \varepsilon_{ij}$$

Приливные деформации удобнее описывать при помощи безразмерного коэффициента:

$$\Lambda = \frac{\lambda}{M^5}$$

GW170817 $M_{chirp} = 1.186^{+0.001}_{-0.001} \qquad M_{chirp} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$ $\bar{\Lambda} \le 900 \qquad \bar{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$ $m_1 = 1.4 M_{\odot} \rightarrow \Lambda = 70 - 580$ R = 10.5 - 13.3 KM [1,2,3]

> Abbott et al. (LIGO Sci. and Virgo Coll.), PRL 2017 Abbott et al. (LIGO Sci. and Virgo Coll.), PRL 2018 Abbott et al. (LIGO Sci. and Virgo Coll.), PRX 2019

Приливная деформируемость

Расчет

$$r \frac{dy(r)}{dr} + y(r)^{2} + y(r)F(r) + r^{2}Q(r) = 0$$

$$F(r) = \frac{r - 4\pi r^{3}[\epsilon(r) - p(r)]}{r - 2m(r)}$$

$$Q(r) = \frac{4\pi r \left[5\epsilon(r) + 9p(r) + \frac{\epsilon(r) + p(r)}{\partial p(r) / \partial \epsilon(r)} - \frac{6}{4\pi r^{2}}\right]}{r - 2m(r)} - 4 \left[\frac{m(r) + 4\pi r^{3}p(r)}{r^{2}[1 - 2m(r)/r]}\right]$$

$$y_{R} \equiv y(R), \ C \equiv m/R$$

$$k_{2} = f(y_{R}, C)$$

 $\lambda = \frac{2}{3}k_2R^5$

[1]Tuhin Malik, Phys. Rev. C 98 035804 (2018)

Характеристики нейтронных звезд для различных параметризаций NN сил

Характеристики нейтронных звезд для различных параметризаций ЛN и ЛЛ сил

Зависимость приливной деформируемости от радиуса звезды для материи включающей гипероны

СПб, 5 июля 2022

СПАСИБО ЗА ВНИМАНИЕ