Study of the systematics in determining the symmetry plane for Bi -Bi collisions at $\sqrt{ } \mathrm{S}_{\mathrm{wN}} 9.2$ GeV in the DCM-QGSM-SMM model

Valerii Troshin NRNU MEPhI
Cross-PWG meeting in MPD
14.06.2022

Collective anisotropic flow

The spatial asymmetry of the energy distribution at the initial moment of the collision of nuclei is transformed, through the strong interaction, into the momentum anisotropy of the produced particles
Fourier series expansion of particle distribution in azimuthal angle with respect to the reaction plane angle
$E \frac{d^{3} N}{d^{3} p}=\frac{1}{2 \pi} \frac{d^{2} N}{p_{T} d p_{T} d y}\left(1+\sum_{n=1}^{\infty} 2 v_{n} \cos \left(n\left(\phi-\Psi_{R P}\right)\right)\right)$
The expansion coefficients:
$v_{n}=\left\langle\cos \left(n\left(\phi-\Psi_{R P}\right)\right)\right\rangle$
In the experiment, we can get the event plane angle Φ_{n},
 relative it:
$v_{n}=\frac{\left\langle\cos n\left(\phi-\Phi_{n}\right)\right\rangle}{R_{n}}$
R_{n} - Resolution of Φ_{n} for the reaction plane angle $\Psi_{\text {Rp }}$:

$$
R_{n}=\left\langle\cos n\left(\Phi_{n}-\Psi_{R P}\right)\right\rangle
$$

Scalar product method

Each particle with an azimuthal angle ϕ is assigned a vector u :
$u_{n}=x_{n}+i y_{n}=\cos (n \phi)+i \sin (n \phi)=\exp (i n \phi)$
The sum of these vectors determines the Q-vector of the event
$Q_{n}=\sum u_{n}=\sum(\cos n \phi+i \sin n \phi)=X_{n}+i Y_{n}=\left|Q_{n}\right| \exp \left(i n \Psi_{E P}^{n}\right)$
Event-averaged correlation of u-vectors with Q-vector depends on v_{n}
$\left\langle u_{n} Q_{n}\right\rangle=\left\langle x_{n} X_{n}\right\rangle+\left\langle y_{n} Y_{n}\right\rangle=\int_{0}^{2 \pi} \frac{d \Psi_{R P}}{2 \pi}\left\langle u_{n}\right\rangle_{\Psi_{R P}}\left\langle Q_{n}\right\rangle_{\Psi_{R P}}=v_{n} V_{n}$
$\left\langle Q_{n}^{a} Q_{n}^{b}\right\rangle=\frac{1}{4} V_{n}^{2}$
$v_{n}=\frac{\left\langle x_{n} X_{n}\right\rangle}{\sqrt{2\left\langle X_{n}^{a} X_{n}^{b}\right\rangle}}=\frac{\left\langle y_{n} Y_{n}\right\rangle}{\sqrt{2\left\langle Y_{n}^{a} Y_{n}^{b}\right\rangle}} \quad$ a,b-sub-events

Corrections for non-uniform acceptance

The QnAnalysis package

Motivation:

-Decoupling configuration from implementation
-Persistency of analysis setup
-Co-existence of different setups (easy systematics study)
-Unification of analysis methods
-Self-descriptiveness of the analysis results

QnAnalysis

QnTools configuration

Mapping AnalysisTree to internal objects of QnTool

QnTools library
FlowVectorCorrections library
Q-vectors corrections

Q-vectors correlations

Building observables (resolution, flow, etc.)

Git repository:
https://github.com/HeavylonAnalysis/QnAnalysis

FHCal's role in scalar product method

FHCal is used to form Q-vectors of sub-events according to the angular distribution of spectator energy in modules:

$$
Q_{n, x}=\sum_{i} w_{i} \cos \left(n \phi_{i}\right) \quad Q_{n, y}=\sum_{i} w_{i} \sin \left(n \phi_{i}\right)
$$

ϕ_{i}-azimuthal angle of modules № i in $\mathrm{FHCal}, \mathrm{w}_{\mathrm{i}}$ - energy in module
Sub-events can be formed by Right(South) and Left(North) FHCal and also by the rings of FHCal modules

When studying correlations, the following values is also considered:
$\frac{1}{2} R_{n}^{T}=\left\langle X_{n}^{a, b} X_{R P}\right\rangle=\left\langle Y_{n}^{a, b} Y_{R P}\right\rangle ; R_{n}^{T}-$ TrueResolution
$\frac{1}{2} R_{n}^{2}=\left\langle X_{n}^{a} X_{n}^{b}\right\rangle=\left\langle Y_{n}^{a} Y_{n}^{b}\right\rangle ; R_{n}-$ RecoResolution

Correlation of Q-vectors in FHCal's rings with reaction plane angle PhiRp

Inner ring

Middle ring

Outer ring

$X X$ and $Y Y$ components diverge for outer ring

FHCal Module numbering

The first and last lines are numbered in the wrong direction. Can we obtain module coordinates from MPDROOT?

Correlation of Q-vectors in FHCal's rings with reaction plane angle PhiRp

Inner ring

Middle ring

Outer ring

Ratio of True Resolution and Reco Resolution

$$
R_{1}=\left\langle\cos \left(\Phi_{1}-\Psi_{R P}\right)\right\rangle
$$

- good agreement for mid-central collisions
- necessary to study difference for central collisions

Summary

- An error was detected in the calculation of FHCal module coordinates
- Two sub-events method is applicable to calculate first harmonic Resolution for mid-central collisions
- It is necessary to study difference for central collisions
- Three sub-events method is needed to study further

Thanks for your attention!

