

Статус и план изготовления и монтажа СЭО <u>В.Б.Рева и команда ИЯФ СО РАН</u>

NICA, BINP&JINR, Russia

"BIG Blue Bubble" HV Tank

LERec, cooling section, BNL

НІАF construction, China Рабочее совещание в ОИЯИ, г.Дубна 20 июня 2022

Parameter	Value
Область энергии	0.2÷2.5МэВ
Число секций охлаждения	2
Стабильность энергии (ΔU/U)	≤10-4
Электронный ток	до 1 А
Размер элект. пучка в секции охлаждения	5÷20 мм
Длина секции охлаждения	6 м
Радиус поворота транспортных каналов	1 м
Магнитное поле в секции охлаждения	0.5÷2 кГс
Вакуум в секции охлаждения	10 ⁻¹¹ мбар
Высота пучков от пола	1340/1660 мм
Полная потребляемая мощность	500-700 кВт

СЭО НИКА Электронное охлаждение на высокую энергию для коллайдера

Концепция замагниченного движения требует продольного магнитного поля вдоль всей траектории электронного пучка

Магнитные элементы СЭО

Система магнитных измерений

Лента

Каретка с датчиком Холла

Каретка

Датчик

Точность позиционирования

Не хуже 80 мкм

Для определения точности позиционирования каретки с датчиками Холла производилось многократное измерение по заданной криволиней- 0.2 ной траектории магнитного поля от постоянных 0.1 магнитов положение которых не менялось. 0 Неточность в позиционировании приводит к возникновению сигнала при вычислении разнос- -0.1 ти между различными измерениями. -0.2

200

300

100

0

Br3-Br8, G

Сравнение измеренного и расчетного значения магнитных полей – продольная компонента. Включен только один поворотный соленоид. Синяя кривая расчет, красная измерения.

Jsbend=195A, коррекции амплитуды с расчетом нет. Ток в расчете 195.5А!

Сравнение измеренного и расчетного значения магнитных полей - вертикальная компонента. Включен только один поворотный соленоид. Синяя кривая расчет, красная измерения.

Jbbend= 270A, множитель коррекции амплитуды с расчетом 0.952. Ток в расчете 282.7А.

Сравнение измеренного и расчетного значения магнитных полей – продольная компонента. Включен только один поворотный соленоид. Синяя кривая расчет, красная измерения.

Разница между расчетами и экспериментально измеренными значениями.

Jsbend= 195А, коррекции амплитуды с расчетом нет. Ток в расчете 195.5А!

Теоретическая координата подгонялась к экспериментальной по формуле

$$Byf_p := Byfit(se_p \cdot 1.03 + 61.2)$$

Сравнение измеренного и расчетного значения магнитных полей – вертикальная компонента. Включены только катушки поворотного поля. Синяя кривая расчет, красная измерения.

Разница между расчетами и экспериментально измеренными значениями.

Jbbend= 270A, множитель коррекции амплитуды с расчетом 0.952. Ток в расчете 282.7А.

Теоретическая координата подгонялась к экспериментальной по формуле

$$Byf_p := Byfit(se_p \cdot 1.03 + 61.2)$$

Остаточное поле	
"2021-12-16_3.out""	red
"2021-12-16_5.out"	blue
"2021-12-21_1.data.out"	green

Еще один пример вариативности остаточного поля. Между 16 3 и 16 5 Line08+Bbend 270 A Между кривыми blue и green – по записям не производилось никаких включений источников. Включение поворотного поля в магните приводит к появлению компоненты остаточной намагниченности в этом же направлении, включение продольного поля, как правило, остаточную компоненту уменьшает. Остаточная компонента устойчива в течении времени.

Меняем продольное поле в поворотном соленоиде. Для сравнения полей умножаем сигналы от меньшего тока на пропорциональный – повышающий коэффициент. Красная кривая – ток 195 А, синяя кривая меньшее значение. Первичные данные без обработки угла наклона каретки.

Измерение с помощью набора датчиков Холла - крест

Фото

4 – датчика каждый из которых мерит 3 компоненты магнитного поля. Итого 12 датчиков Холла.
Каретка лежит на боку в направляющей рельсе, поэтому

- 1 внешний радиальный,
- 2 внутренний радиальный,
- 3 нижний вертикальный,
- 4 верхний вертикальный

<u>пунктиром – расчеты (теория),</u> сплошная – эксперимент

Амплитудный коэффициент коррекции к расчетам MAG3D=1.06/1.005=1.055; Расчет 282А, источник питания 270А.

By, G

b1=(dBr/dy+dBy/dr)/2, G/cm

n=R*(dBy/dr)/By=n=-100*b1v/b0v=0.450, R=100 см

Экспериментально измеренный показатель спада магнитного поля 0.45

Новые каскадные трансформаторы передачи мощности R0=0.09 Ом L0=33 мкГн C0 R0 R0 LÒ С0=940 нФ LO 10 10 Rn L1 > $L1 \geq R1$ R1 C1 C1 L1 > R1 Rn=3.3 Ом Collector, HVT Rcoll=15 Ом K1 К – коэффициент K21 передачи при 15 Ом Uout/Uin 0.6 0.4 0.2 0 20 30 40 10 f, кГц K3, K11, K20 1.5 K3 K11 0.5 K20 0<u>∟</u> 10 20 30 40 f, кГц

Вакуумная система

Вакуумная система СЭО без ускорительной части.

Вакуумная система СЭО разделена на три части посредством шиберов.

1. «Пушечная» часть – шибер, откачка, поворот, вход в бак, ускорительная колонна, электронная пушка.

2. «Коллекторная» часть – шибер, откачка, поворот, вход в бак, ускорительная колонна, фильтр Вина, коллектор.

3. «Ускорительная» часть – камера секции охлаждения, тороиды, транспортный канал электронного пучка.

Сегмент вакуумной системы СЭО на участке охлаждения

1 – магнито-разрядный насос с титановым испарителем, 2 – угловой клапан с турбомолекулярным насосом, 3 – фланцы для подключения измерительных ламп, 5 – разъемы для подключения питания NEG-картриджей.

Вакуумная камера центральной секции охлаждения и ускорительные трубки

Подсоединение электродов пикапов

Две вакуумные камеры на этапе подготовки

Стенд для испытания ускорительных трубок (необходимо будет иметь такой же в ОИЯИ)

Вакуум в ускорительной трубке, предварительный прогрев в печи, без титановых испарителей (только магниторазрядный насос)

Система прогрева вакуумных элементов

Испытано на стенде пушки, достигнут вакуум без использования титановых испарителей 10⁻⁸ мбар.

Планы – сдать D, A1, A2 к концу этого года (магнитная система), без

Элемент А1 (магнитная система)

В процессе сборки конструктор проверяет линейные размеры

необходимо будет иметь набор подставок в ОИЯИ для сборки

Элемент А1 в сборе

Источник	Нагрузка название	I (A)	U (B)	Р (кВт)	Тип источника	Нагрузка
IST-3up	SBend-1 (up), SBend-2 (up), SBend-3 (up), SBend-4 (up), HMatch-1 (up), HMatch-2(up)	195	161	31.5	2CH150-3/250	0.8 Ом
IST-5up	BBend-1 (up), BBend-2 (up), BBend-3 (up), BBend-4 (up)	295	25.2	7.45	MPS440/33	83 мОм
IST-9up	BTor90-1 (up), BTor90-2 (up)	295	12.6	3.72	MPS440/33	41 мОм
IST-4up	Line08-1 (up), Line08-2 (up)	250	77.2	19.3	2CH150-3/110	0.32 Ом
IST-7up	Line2-1 (up), Line2-2 (up), Line2-3 (up), Line2-4 (up), Line2-5 (up)	135	223	30.1	1CH150-3/300	1.65 Ом
IST-1up	Cool	221	275	61	2CH150-3/330	1.24 Ом
IST-2a-up	Tor90-1 (up)	710	27.9	19.8	MPS720/31	39 мОм
IST-2b-up	Tor90-2 (up)	710	27.9	19.8	MPS720/31	39 мОм
IST-10up	Idip-1 (up)	440	11.2	5	MPS440/17	83 мОм
IST-11up	Idip-2 (up)	440	11.2	5	MPS440/17	83 мОм
IST-6up	Insert-1 (up), Insert-2 (up), Insert-3 (up), Insert-4 (up), Insert-5 (up)	320	68.4	21.9	2CH150-3/110	0.22 Ом
	InsMatch-1 (up), InsMatch-2 (up)					
IST-8up	Match-1 (up), Match-2 (up)	440	17.2	7.56	MPS400/24	39 мОм
IST-3dn	SBend-1 (down), SBend-2 (down), SBend-3 (down), SBend-4 (down),	195	160	31.2	2CH150-3/250	0.8 Ом
	HMatch-1 (down), HMatch-2 (down)					
IST-5dn	BBend-1 (down), BBend-2 (down), BBend-3 (down), BBend-4 (down)	295	25.2	7.45	MPS440/33	83 мОм
IST-9dn	BTor90-1 (down), BTor90-2 (down)	295	12.6	3.72	MPS440/33	41 мОм
IST-4dn	Line08-1 (down), Line08-2 (down)	250	77.2	19.3	2CH150-3/110	0.32 Ом
IST-7dn	Line2-1 (down), Line2-2 (down), Line2-3 (down), Line2-4 (down),	135	303.3	42.1	1CH150-3/360	2.24 Ом
	Line2-5 (down), Line1.8-1 (down), Line1.8-2 (down)					
IST-1dn	Cool	221	275	61	2CH150-3/330	1.24 Ом
IST-2a-dn	Tor90-1 (down)	710	27.9	19.8	MPS720/31	39 мОм
IST-2b-dn	Tor90-2 (down)	710	27.9	19.8	MPS720/31	39 мОм
IST-10dn	Idip-1 (down)	440	11.2	5	MPS440/17	83 мОм
IST-11dn	Idip-2 (down)	440	11.2	5	MPS440/17	83 мОм
IST-6dn	Insert-1 (down), Insert-2 (down)	320	68.4	21.9	2CH150-3/110	0.22 Ом
IST-8dn	Match-1 (down), Match-2 (down)	440	17.2	7.56	MPS440/30	39 мОм

типа MPS-440

Количество 10 шт.

Величина
440 A
15 B
7 кВА
Трехфазная
5×10 ⁻⁴
Водяное/воздушное
3,5 л/мин.
1 кВт

типа MPS-440

Структурная схема преобразователя

Конструкция преобразователя включает:

Выпрямитель, инвертор, понижающий трансформатор и фильтр низких частот

типа MPS-440 Внешний вид преобразователя

Преобразователи представляют собой модуль евромеханики 5Ux84HPx650mm. На комплексе эти преобразователи будут размещены в шкафах 600×1000×2000 мм³, по 5 преобразователей в одном шкафу.

На текущий момент все преобразователи полностью собраны. Необходимо сделать кабельную разводку в шкафу и провести наладку преобразователей. Полное завершение работ по преобразователям этого типа октябрь 2022 г.

типа MPS-710

Количество 2 шт.

Величина
720 A
70 B
50 кВА
Трехфазная
5×10 ⁻⁴
Водяное/воздушное
7 л/мин.
1,5 кВт

типа MPS-710

Структурная схема преобразователя

Преобразователь представляет собой два параллельно включенных модуля с выходным током 360 А и напряжением 70 В.

типа MPS-710 Внешний вид преобразователя

Все элементы преобразователя размешены в шкафах размером 600×1000×2000 мм³ по одному преобразователю на шкаф

На текущий момент модули преобразователя собраны на 90%, необходима установка модулей в шкаф и наладка преобразователя. Полное завершение работ по преобразователям этого типа сентябрь 2022 г.

типа MPS-6

Количество 124 шт.

Параметр	Величина
Максимальный выходной ток	± 6 A
Максимальное выходное напряжение	± 140 B
Погрешность установки значения	10 ⁻³
выходного тока преобразователя, не	
хуже	
Максимальный дрейф выходного	10-4
тока за 24 ч	
Входная питающая сеть	Трехфазная
Охлаждение силовых элементов цепи	Воздушное
преобразователя	
Частота преобразования	50 кГц

типа MPS-6

Структурная схема модуля питания

Модуль питания выполнен по схеме с двойным преобразованием. В состав модуля входит: общий источник буферного питания, 8 преобразователей постоянного напряжения в постоянный ток, контроллер с CANbus интерфейсом

типа MPS-6

Структурная схема преобразователя

Конструкция преобразователя включает:

Мостовой инвертор, фильтр низких частот, два измерителя тока и две петли обратной связи (ток и напряжение)

O.V.Belikov@inp.nsk.su

типа MPS-6 Внешний вид модуля питания

Восемь каналов питания размещены в крейте 432×415×266 мм³

На текущий момент изготовлены преобразователи. Сборка крейтов откладывается из-за задержек с поставками элементов евроконструктива Schroff. Полная готовность ожидается в марте 2023 г

O.V.Belikov@inp.nsk.su

Источники слаботочного питания типа MPS-20

Количество 53 шт.

Дополнительно используются в качестве токодобавок к магнитным элементам требующим сильноточного питания

Параметр	Величина
Максимальный выходной ток	± 20 A
Максимальное выходное напряжение	± 50 B
Погрешность установки значения	10 ⁻³
выходного тока преобразователя, не	
хуже	
Максимальный дрейф выходного	10-4
тока за 24 ч	
Входная питающая сеть	Трехфазная
Охлаждение силовых элементов цепи	Воздушное
преобразователя	
Частота преобразования	50 кГц

типа MPS-20

Структурная схема источника питания

Источник питания выполнен по схеме с двойным преобразованием:

- 1. Преобразователь переменного сетевого напряжения в постоянное
- 2. Преобразователь постоянного напряжения в постоянный ток

типа MPS-20

Структурная схема преобразователя

Конструкция преобразователя включает:

Мостовой инвертор, фильтр низких частот, два измерителя тока и две петли обратной связи (ток и напряжение)

O.V.Belikov@inp.nsk.su

20 June 2022

Источники слаботочного питания типа MPS-20

Внешний вид источника питания

Один канал питания размещены в крейте 432×355×133 мм³

O.V.Belikov@inp.nsk.su

Параметр	Величина
Выходное напряжение источника	от 0 до 5 кВ
питания управляется	
Максимальный выходной ток	3 A
Долговременная нестабильность	10 %
выходного напряжения не хуже	
Возможность измерения тока	от 10 мкА до 3 А

Конструктивно система питания коллектора выполнена в виде двух отдельных экранированного блоков, состоящих из В1- С1 и В2- С2. Вес каждого приблизительно 25 кг. Размещены данные блоки один над другим на основании «головы» охладителя рядом с каскадным трансформатором.

Коллекторное питание

Система питания коллектора состоит из:

- 1. модуля согласования с высоковольтной колонной А1,
- 2. двух регулируемых источников постоянного напряжения 0-5кВ и выходным током
- до 1.5 А (на основе В1-С1 и В2-С2), включенных параллельно
- 3. микропроцессорного контроллера D1

Регулирование и стабилизация выходного напряжения системы выполняется контроллером D1.

O.V.Belikov@inp.nsk.su

Коллекторное питание

Внешний вид

На текущий момент:

- Собран один источник 0-5кВ, ожидается тестовое включение
- Изготовлены почти все детали ещё на два источника,
- Закупаются высокочастотные конденсаторы для блока согласования коллекторного питания с каскадным трансформатором

В августе ожидается готовность контроллера управления коллекторным питанием, в сентябре будут тестовые испытания. Полная готовность предполагается к концу 2022 г.

Питание высоковольтной колонны

Количество 4 шт.

Параметр	Величина
Выходное переменное напряжение	700 B
источника питания	
Частота выходного напряжения	25 кГц
Максимальная выходная мощность	50 кВт

Все 4 источника питания изготовлены и испытаны. По испытаниям выполнены необходимые доработки. Источники готовы к отправке.

Питание высоковольтной колонны

Внешний вид

O.V.Belikov@inp.nsk.su

20 June 2022

1. Вода Важно максимально быстро определится с проектом 2. Кабели силовых ИП расположения инженерных коммуникаций? Так как 3. Кабели корректоров

они используют общие стены и каналы

влегас 2 трубы 67 жи

- 3. Масло
- 4. Элегаз

Спасибо за внимание