Energy-dependent flavor ratios, cascade/track spectrum tension and high-energy

neutrinos from magnetospheres of supermassive black holes

Riabtsev Kirill
Lomonosov MSU, INR, Moscow

<u>Email:</u> riabtcev.ki19@physics.msu.ru

Phone number: +79097390829 (Telegram)

Sergey Troitsky INR, Moscow

arXiv:2204.09339

The origin of high-energy astrophysical neutrinos?

change of the flavor content of astrophysical neutrinos with energy?

a mild tension between spectra obtained in different analyses

IceCube neutrinos (E>10000 GeV)

Observed spectra

Flavor ratios (at the detector and at the source, taking into account neutrino oscillations)

$$p+p
ightarrow \ p+p+many imes \left(\pi^+ + \pi^- + \pi^0\right)$$

 $p\gamma$ -interactions:

1.
$$p + \gamma \rightarrow \Delta^+$$

2.
$$\Delta^+ \rightarrow n + \pi^+ \text{ or } \Delta^+ \rightarrow p + \pi^0$$
.

Decays following pp- and $p\gamma$ -interactions:

1.
$$\pi^0 \to \gamma + \gamma$$
, $\pi^{\pm} \to \mu^{\pm} + \nu_{\mu} (\overline{\nu_{\mu}})$

2.
$$\mu^{\pm} \rightarrow e^{\pm} + \nu_e (\overline{\nu_e}) + \overline{\nu_\mu} (\nu_\mu)$$
.

Physical conditions at the sources

Observed

spectra

- Tau plus electron neutrinos (dots with error bars)
- Mu neutrinos (solid line)

Flavor ratios (at the detector and at the source, taking into account neutrino oscillations)

- The case of flavor equipartition (dashed green line)
- The case of muon damp(dashed red line)

pp-interactions:

$$p + p \rightarrow p + p + many \times (\pi^{+} + \pi^{-} + \pi^{0})$$

 $p\gamma$ -interactions:

1.
$$p + \gamma \rightarrow \Delta^+$$

2.
$$\Delta^+ \rightarrow n + \pi^+ \text{ or } \Delta^+ \rightarrow p + \pi^0$$
.

Decays following pp- and $p\gamma$ -interactions:

1.
$$\pi^0 \to \gamma + \gamma$$
, $\pi^{\pm} \to \mu^{\pm} + \nu_{\mu} (\overline{\nu_{\mu}})$

2.
$$\mu^{\pm} \rightarrow e^{\pm} + \nu_e (\overline{\nu_e}) + \overline{\nu_u} (\nu_u)$$
.

Physical conditions at the sources

- In the case of damped muons the neutrinos from the last equation are "missing", changings the flavor ratios
- "Muon damp" corresponds to specific magnetic fields

The class of the sources

- Black holes
- •Gamma-ray bursts

E, GeV

BH mass - Eddington ratio parameter space, calculated in accordance with BH magnetosphere toy model, which gets to estimate proton energies and finally provide a prediction of neutrino spectra

Comparison of the muon neutrino spectrum determined by IceCube and predictions of the toy model discussed in the text

Comparison of the e+tau neutrino spectrum determined by IceCube and predictions of the toy model discussed

muon damping case

0

It is presently unclear, whether the tension is caused by systematic uncertainties or by physical reasons.

1

We assumed that the reason for the discrepancy is related to the change of flavor composition

2

Then we estimated the magnetic field at sources required for this switch

3

We constructed a quantitative toy model

4

We found that this model describes well the spectra provided an additional component with standard flavor content is added at low energies

Detailed studies of energy-dependent flavor ratios will become possible only with the next-generation neutrino

telescopes

Thank you for your attention! Questions?

```
Bibliography

https://arxiv.org/abs/2111.
10299

(mu neutrinos data)

https://arxiv.org/abs/2001.
09520

(e+tau neutrinos data)

https://arxiv.org/abs/1510.
04023

(SMBH magnetospheres)
```