pp scattering at the LHC with the lepton pair production and one proton tagging

E.K. Karkaryan.
The talk is based on the following work: arXiv:2207.07157 [hep-ph]

LPI RAS
25.10.2022

Introduction

- Searching for New Physics in muon pairs production at very high energies at the LHC is of a great interest.
- The ATLAS collaboration has managed to measure the cross sections of proton-tagged dilepton production (arXiv:2009.14537).
- The analytical formulas describing the fiducial cross-section of the lepton pair production in $p p$ scattering via $\gamma \gamma$ fusion mechanism are provided.
- The derivation is based on the modified equivalent photon approximation (EPA).
- Obtained formulas allow to perform numerical calculation instead of using Monte-Carlo method.
- The work is supported by RSF grant No 19-12-00123-П.

Elastic case: $p p \rightarrow \gamma \gamma \rightarrow p \mu \mu p$

- Here the both protons don't decay \rightarrow the EPA can be used.
- This leads to the restriction on the virtuality of the emitted photon: $Q^{2}<\hat{q}^{2}=(0.2 \mathrm{GeV})^{2}$.
- Since the protons are not fundamental particles one should take into account their form-factors.
The spectrum of photons radiated by proton

$$
\begin{equation*}
n_{p}(\omega)=\frac{2 \alpha}{\pi \omega} \int_{0}^{\infty} \frac{D\left(Q^{2}\right)}{Q^{4}} q_{\perp}^{3} \mathrm{~d} q_{\perp} \tag{1}
\end{equation*}
$$

where $Q^{2} \equiv-q^{2}=q_{\perp}^{2}+\omega^{2} / \gamma^{2}$ is the photon 4-momentum squared, $\gamma=E_{p} / m_{p} \approx 6.93 \cdot 10^{3}$ is the Lorentz factor of the proton.

Elastic case: $p p \rightarrow \gamma \gamma \rightarrow p \mu \mu p$

The value $D\left(Q^{2}\right)$ is a combination of form-factors:

$$
\begin{equation*}
D\left(Q^{2}\right)=\frac{G_{E}^{2}\left(Q^{2}\right)+\frac{Q^{2}}{4 m_{\rho}^{2}} G_{M}^{2}\left(Q^{2}\right)}{1+\frac{Q^{2}}{4 m_{\rho}^{2}}} \tag{2}
\end{equation*}
$$

where $G_{E}\left(Q^{2}\right)$ and $G_{M}\left(Q^{2}\right)$ are the Sachs electric and magnetic form factors and in the dipole approximation:

$$
\begin{equation*}
G_{E}\left(Q^{2}\right)=\frac{1}{\left(1+Q^{2} / \Lambda^{2}\right)^{2}}, \quad G_{M}\left(Q^{2}\right)=\frac{\mu_{p}}{\left(1+Q^{2} / \Lambda^{2}\right)^{2}} \tag{3}
\end{equation*}
$$

- $\Lambda^{2}=\frac{12}{r_{p}^{2}}=0.66 \mathrm{GeV}^{2}$,
- $\mu_{p}=2.79$ is the proton magnetic moment
- $r_{p}=0.84 \mathrm{fm}$ is the proton charge radius

Elastic case: $p p \rightarrow \gamma \gamma \rightarrow p \mu \mu p$

Substituting (3) $\rightarrow(2) \rightarrow(1)$ one obtains for the spectrum of equivalent photons the following analytical expression:

$$
\begin{align*}
n_{p}(\omega) & =\frac{\alpha}{\pi \omega}\left\{\left(1+4 u-\left(\mu_{p}^{2}-1\right) \frac{u}{v}\right) \ln \left(1+\frac{1}{u}\right)-\right. \\
& -\frac{24 u^{2}+42 u+17}{6(u+1)^{2}}-\frac{\mu_{p}^{2}-1}{(v-1)^{3}}\left[\frac{1+u / v}{v-1} \ln \frac{u+v}{u+1}-\right. \\
& \left.-\frac{6 u^{2}\left(v^{2}-3 v+3\right)+3 u\left(3 v^{2}-9 v+10\right)+2 v^{2}-7 v+11}{6(u+1)^{2}}\right], \tag{4}
\end{align*}
$$

where

$$
u=\left(\frac{\omega}{\Lambda \gamma}\right)^{2}, v=\left(\frac{2 m_{p}}{\Lambda}\right)^{2}
$$

Elastic case: $p p \rightarrow \gamma \gamma \rightarrow p \mu \mu p$

In EPA the cross section for the lepton pair production can be written as following

$$
\begin{equation*}
\sigma\left(p p \rightarrow p \ell^{+} \ell^{-} p\right)=\int_{0}^{\infty} \int_{0}^{\infty} \sigma\left(\gamma \gamma \rightarrow \ell^{+} \ell^{-}\right) n_{p}\left(\omega_{1}\right) n_{p}\left(\omega_{2}\right) \mathrm{d} \omega_{1} \mathrm{~d} \omega_{2} \tag{5}
\end{equation*}
$$

where $\sigma\left(\gamma \gamma \rightarrow \ell^{+} \ell^{-}\right)$is the cross section for the production of a lepton pair in a collision of two real photons with energies ω_{1} and ω_{2}.

Elastic case: $p p \rightarrow \gamma \gamma \rightarrow p \mu \mu p$

In order to calculate the fiducial cross-section the ATLAS
experimental constraints on the phase space volume must be imposed:

- $p_{i, T}>\hat{p}_{T}=15 \mathrm{GeV}$ for muons ($\hat{p_{T}}=18 \mathrm{GeV}$ for electrons), where $p_{i, T}$ is a transversal momentum of a lepton I_{i}.
- $\eta_{i}<\hat{\eta}=2.4$ for muons ($\hat{\eta}=2.47$ for electrons), where η_{i} is a pseudorapidity of a lepton l_{i}.
- $p_{T} \equiv p_{1, T} \approx p_{2, T}$ since sum of the transversal momenta of photons $\sqrt{Q^{2}} \lesssim \hat{q}=0.2 \mathrm{GeV}$.
- $20 \mathrm{GeV}<W<70 \mathrm{GeV}$ and $W>105 \mathrm{GeV}$, where W is an invariant mass of a muon pair.
- $0.035<\xi<0.08 \rightarrow 227 \mathrm{GeV}<\omega<520 \mathrm{GeV}$, where ξ is a fraction of the energy that the proton loses. The given range of values allows the proton to hit the forward detector.

Elastic case: $p p \rightarrow \gamma \gamma \rightarrow p \mu \mu p$

In order to calculate the expression (5) with experimental cuts one should introduce explicitly the integration over W, p_{T} and η. For this purpose it is convenient to perform a substitution $\left(\omega_{1}, \omega_{2}\right) \rightarrow(W, y)$ in the following way

- $W^{2}=4 \omega_{1} \omega_{2}$ (when both photons are almost real);
- $y=\frac{1}{2} \ln \frac{\omega_{1}}{\omega_{2}}$.

Integration over p_{T} can be performed with help of the following formula:

$$
\frac{\mathrm{d} \sigma\left(\gamma \gamma \rightarrow \ell^{+} \ell^{-}\right)}{\mathrm{d} p_{T}}=\frac{8 \pi \alpha^{2}}{W^{2} p_{T}} \cdot \frac{1-2 p_{T}^{2} / W^{2}}{\sqrt{1-4 p_{T}^{2} / W^{2}}}
$$

Elastic case: $p p \rightarrow \gamma \gamma \rightarrow p \mu \mu p$

Integration over η is equivalent to the integration over y since there is a pure kinematical relation between them:

$$
\hat{y}=\hat{\eta}+\frac{1}{2} \ln \frac{1-\sqrt{1-4 p_{T}^{2} / W^{2}}}{1+\sqrt{1-4 p_{T}^{2} / W^{2}}}
$$

Introducing the photon-photon luminosity one obtains the following integral:

$$
\frac{\mathrm{d} \hat{L}}{\mathrm{~d} W}=\frac{W}{2} \int_{-\hat{y}}^{\hat{y}} n_{p}\left(\frac{W}{2} \mathrm{e}^{y}\right) n_{p}\left(\frac{W}{2} \mathrm{e}^{-y}\right) \mathrm{d} y .
$$

A few words about inelastic case: $p p \rightarrow \gamma \gamma \rightarrow p \mu \mu X$

- Here one of the protons disintegrates \rightarrow the EPA can't be used to describe this proton. It can be modified within the approach of the scattering amplitudes helicity representation.
- Virtuality of the photon emitted by this proton isn't small \rightarrow integration over Q^{2} must be performed using experimental cuts up to $\hat{p}_{T}^{\ell \ell} \equiv 5 \mathrm{GeV}$.
- Within a parton framework one has to consider proton-quark collision and sum over all quarks so as:

$$
\sigma\left(p p \rightarrow p+\ell^{+} \ell^{-}+X\right)=\sum_{q} \sigma\left(p q \rightarrow p+\ell^{+} \ell^{-}+q\right)
$$

Also the integration should be performed with parton density functions (PDF) over the variable of fraction of proton energy the quark possesses x.

Numerical results

- Elastic case:

$$
\begin{aligned}
& \sigma_{\text {fid }}\left(p p \rightarrow p+\mu^{+} \mu^{-}+p\right)=8.6 \mathrm{fb} \\
& \sigma_{\text {fid }}\left(p p \rightarrow p+e^{+} e^{-}+p\right)=10.1 \mathrm{fb}
\end{aligned}
$$

- Inelastic case:

$$
\begin{aligned}
& \sigma_{\text {fid }}\left(p p \rightarrow p+\mu^{+} \mu^{-}+X\right)=9.2 \mathrm{fb} \\
& \sigma_{\text {fid. }}\left(p p \rightarrow p+e^{+} e^{-}+X\right)=11 \mathrm{fb}
\end{aligned}
$$

- Total elastic-inelastic cross-section is

$$
\begin{gathered}
\tilde{\sigma}_{\mu \mu+p}^{\text {fid. }}=18 \pm 2 \mathrm{fb} \\
\tilde{\sigma}_{e e+p}^{\text {fid. }}=21 \pm 2 \mathrm{fb}
\end{gathered}
$$

- ATLAS results:

$$
\begin{gathered}
\sigma_{\mu \mu+p}^{\text {exp. }}=7.2 \pm 1.6 \text { (stat.) } \pm 0.9 \text { (syst.) } \pm 0.2 \text { (lumi.) fb, } \\
\sigma_{e e+p}^{\text {exp. }}=11.0 \pm 2.6 \text { (stat.) } \pm 1.2 \text { (syst.) } \pm 0.3 \text { (lumi.) fb }
\end{gathered}
$$

Survival factor

- The so-called survival factor $S(b)$ takes into account the diminishing of the cross sections due to breaking of both protons occurring when the protons scatter with small impact parameter b.
- For elastic case this factor provides 10% diminishing. It can be taken into account without Monte-Carlo simulations and calculated in the following work: arXiv:2106.14842.
- For inelastic case this factor provides 50% diminishing (arXiv:2107.02535).
- Taking into account what is said above it is seen that the derived formulas are in agreement with the experimental data at the level of $2-3$ standard derivations.

