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Abstract
A consistent microscopic theory of superconductivity for strongly corre-
lated electronic systems is presented within the extended t–J–V where
the intersite Coulomb interaction (CI) and the electron-phonon interaction
(EPI) are taken into account. The exact Dyson equation for the normal and
anomalous (pair) Green functions (GFs) is derived for the projected (Hub-
bard) electronic operators. The equation is solved in the self-consistent
Born approximation for the self-energy. We obtain the d-wave pairing with
high-Tc induced by the strong kinematical interaction of the order of the
kinetic energy ∼ t of electrons with spin fluctuations. The Coulomb repul-
sion and EPI are suppressed for the d-wave pairing. These results support
the spin-fluctuation mechanism of high-temperature superconductivity in
cuprates previously proposed in phenomenological models.

Extended t− J − V model
we consider electronic spectrum and superconducting pairing in the ex-
tended t−J−V model on a square lattice. To study strong electron corre-
lations in the singly occupied subband of the t–J model one has to use the
projected electron operators, as ã†iσ = a

†
iσ(1−Niσ̄). Here a

†
iσ is a creation

electron operator on the lattice site i with spin σ/2, σ = ±1 (σ̄ = −σ) and
Niσ̄ = ã

†
iσ̄ãiσ̄ is the number operator. The t–J model in the conventional

notation reads:

H = −
∑
i ̸=j,σ

tijã
+
iσãjσ +

1

2

∑
i ̸=j

Jij

(
SiSj −

1

4
NiNj

)
+Hc,ep, (1)

where Sα
i = (1/2)

∑
s,s′ ã

+
isσ

α
s,s′ãis′ are spin-1/2 operators, σαs,s′ is the

Pauli matrix. Here tij is the hopping parameter between i and j lattice sites
and Jij is the antiferromagnetic (AFM) exchange interaction. The intersite
CI Vij for electrons and EPI gij are taken into account by the Hamiltonian:

Hc,ep =
1

2

∑
i ̸=j

VijNiNj +
∑
i,j

gijNi uj, (2)

where uj describe atomic displacements on the lattice site j for phonon
modes.

The unconventional commutation relations for the projected electron op-
erators result in the kinematical interaction. For instance, if we consider
commutation relation for the projected electron creation ã

†
jσ and annihila-

tion ãiσ operators,

ãiσã
†
jσ + ã

†
jσãiσ = δij(1−Niσ/2 + σSz

i ), (3)

we observe that they are Fermi operators on different lattice sites but on
the same lattice site they describe the kinematical interaction of electrons
with charge Niσ and spin Sα

i fluctuations.
It is convenient to describe the projected electron operators by the Hub-

bard operators (HOs), as, e.g., ã+iσ = Xσ0
i . Using the HOs, we write the

Hamiltonian (1) in the form

H = −
∑
i ̸=j,σ

tijX
σ0
i X0σ

j − µ
∑
iσ

Xσσ
i

+
1

4

∑
i ̸=j,σ

Jij

(
Xσσ̄
i X σ̄σ

j −Xσσ
i X σ̄σ̄

j

)
+Hc,ep, (4)

where we introduced the chemical potential µ. To discuss the electronic
spectrum and superconducting pairing within the model we consider the
retarded two-time GF:

Ĝij,σ(t− t′) = −iθ(t− t′)⟨ {Ψiσ(t),Ψ
+
jσ(t

′) } ⟩
≡ ⟨⟨Ψiσ(t) |Ψ+

jσ(t
′)⟩⟩, (5)

where {A,B} = AB+BA and we introduced HOs in the Nambu notation:

Ψiσ =

(
X0σ
i

X σ̄0
i

)
, Ψ+

iσ =
(
Xσ0
i X0σ̄

i

)
. (6)

Introducing the Fourier representation in (k, ω)-space for the GF (5)

Ĝijσ(t− t′) =
1

2π

∫ ∞

−∞
dte−iω(t−t′)Ĝijσ(ω), (7)

Ĝijσ(ω) =
1

N

∑
k

exp[k(ri − rj)] Ĝσ(k, ω), (8)

we represent it as the matrix

Ĝσ(k, ω) =

(
Gσ(k, ω) Fσ(k, ω)

F
†
σ(k, ω) −Gσ̄(−k,−ω)

)
, (9)

where Gσ(k, ω) and Fσ(k, ω) are the normal and anomalous parts of the
GF (5).

By differentiating the GF 5 over the time t and t′ we can obtain the Dyson
equation in the form

Ĝijσ(ω) = Ĝ0
ijσ(ω) +

∑
kl

Ĝ0
ikσ(ω) Q

−1 Σ̂klσ(ω) Ĝljσ(ω), (10)

where Q = 1−n/2. Here the zero–order GF in generalized MFA (GMFA)
has the form:

Ĝ0
σ(k, ω) = Q

ωτ̂0 + ε(k)τ̂3 +∆σ(k)τ̂1
ω2 − E2(k)

, (11)

where τ̂0, τ̂1, τ̂3 are the Pauli matrices and E2(k) = ε2(k) + ∆2
σ(k) is the

energy of quasiparticle (QP) excitations in the superconducting state. The
self–energy operator Σ̂klσ(ω) is given by the proper part of the scattering
matrix that has no parts connected by the single zero-order GF:

Σ̂ijσ(ω) = ⟨⟨Ẑ(irr)
iσ | Ẑ(irr)+

jσ ⟩⟩properω Q−1 =

(
Mijσ(ω) Φijσ(ω)

Φ
†
ijσ(ω) −Mijσ(ω)

)
.

(12)
The functions Mijσ(ω) and Φijσ(ω) denote the respective normal and
anomalous (pair) components of the self-energy operator. Therefore, for
the single–electron GF (9) we obtain an exact representation:

Ĝσ(k, ω) = Q{ωτ̂0 − Êσ(k)− Σ̂σ(k, ω)}−1. (13)

Results and discussion
The normal state GF in the generalized mean-field approximation (GMFA)
is given by the GF (13)

G0(k, ω) = ⟨⟨X0σ
k |Xσ0

k ⟩⟩ω =
Q

ω − ε(k)
. (14)

Here the electronic energy is determined by the relation:

ε(k) = −4t αγ(k)− 4t′ βγ′(k)− 4t′′ βγ′′(k) + ω(c)(k)− µ, (15)

ω(c)(k) =
1

N

∑
q

V (k− q)N(q), (16)

where γ(k) = (1/2)(cos kx + cos ky), γ′(k) = cos kx cos ky, γ′′(k) =
(1/2)(cos 2kx + cos 2ky) and the hopping parameters are given by t′ =
0.1t, t′′ = 0.2t. We take t = 0.4 eV as the energy unit. α, β are renormal-
ization parameters.

Figure 1: Energy dispersion for δ = 0.1.

Figure 2: Spectral density A(k, ω) for δ = 0.1.

The self-energy 12 is determined by the many-particle GFs where the
normal and anomalous (pairs) components are given by:

Mijσ(ω) = (1/Q) ⟨⟨[X0σ
i , H ]|[H,Xσ0

j ]⟩⟩ω, (17)

Φijσ(ω) = (1/Q) ⟨⟨[X0σ
i , H ]|[X0σ̄

j , H ]⟩⟩ω. (18)

Using the the spectral representation we represent them in terms of the
time-dependent correlation functions which are calculated in the SCBA
where propagation of Fermionic and Bosonic excitation on different lattice
sites is assumed to be independent:

⟨Xσ′0
m B+

jσσ′|X0σ′

l (t)Biσσ′(t)⟩ = ⟨Xσ′0
m X0σ′

l (t)⟩⟨B+
jσσ′Biσσ′(t)⟩ ,(19)

⟨X σ̄′0
m Bjσ̄σ̄′|Xσ′0

l (t)Biσσ′(t)⟩ = ⟨X σ̄′0
m Xσ′0

l (t)⟩ ⟨Bjσ̄σ̄′Biσσ′(t)⟩ .(20)

Calculation of the corresponding single-particle correlation functions in
these equations results in the self-energy

M(k, ω) =
1

N

∑
q

+∞∫
−∞

dz

πQ
K(+)(ω, z,k,q)[−Im]G(q, z), (21)

Φσ(k, ω) =
1

N

∑
q

+∞∫
−∞

dz

πQ
K(−)(ω, z,k,q)[−Im]Fσ(q, z). (22)

Figure 3: Energy dispersion for δ = 0.3.

The kernel of the integral equations is defined as

K(±)(ω, z,k,q) =

+∞∫
−∞

dΩ

2π

tanh(z/2T ) + coth(Ω/2T )
ω − z − Ω

×
{
|t(q)|2Imχsf (k− q,Ω)± |gep(k− q)|2Imχph(k− q,Ω)

±
[
|V (k− q)|2 + |t(q)|2/4

]
Imχcf (k− q,Ω)

}
≡

+∞∫
−∞

dΩ

2π

tanh(z/2T ) + coth(Ω/2T )
ω − z − Ω

λ(±)(k,q,Ω). (23)

The spectral densities of bosonic excitations are determined by the dy-
namic susceptibility for spin (sf ), number (charge) (cf ), and lattice
(phonon) (ph) fluctuations

χsf (q, ω) = −⟨⟨Sq|S−q⟩⟩ω, (24)
χcf (q, ω) = −⟨⟨δNq|δN−q⟩⟩ω, (25)
χph(q, ω) = −⟨⟨uq|u−q⟩⟩ω. (26)

Let us consider the electronic spectrum in the normal state which is de-
termined by normal state GF in Eq. (13)

G(k, ω) = ⟨⟨X0σ
k |Xσ0

k ⟩⟩ = Q

ω − ε(k)−M(k, ω)
. (27)

The normal state self-energy is given by Eqs. (21), (23). The spectral den-
sity of electronic excitations is determined by

A(k, ω) = − 1

πQ
ImG(k, ω + iϵ) =

−M ′′(k, ω)/π
[ω − ε(k)−M ′(k, ω)]2 + [M ′′(k, ω)]2

.(28)

Here we introduce the real, M ′(k, ω), and imaginary, M ′′(k, ω), parts of
the self-energy: M(k, ω + iϵ) = M ′(k, ω) + iM ′′(k, ω). The renormaliza-
tion parameter for the electronic energy close to the FS, ω → 0, reads:

Zk(0) = 1− [∂M ′(k, ω)/∂ω]ω=0 ≡ 1 + λ(k), (29)

where λ(k) is the coupling parameter.

Figure 4: Imaginary part of the spin-fluctuation self-energy
−(1/π)ImMsf (k, ω) for δ = 0.1.
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Figure 5: Spectral density A(k, 0) in the quarter of the BZ for δ = 0.05.

The self-energy and the spectral density are calculated by iteration. The
results of the 10-th order of iterations for the spectral density for the
electron interaction with spin-fluctuations Asf (k, ω) (28) and the energy
dispersion ε̃(k) along the main directions in the Brillouin zone (BZ),
Γ (0, 0) → X (π, 0) → M (π, π) → Γ (0, 0), are presented in Figs. 2 –
3.

At low doping the spectral density shows a large incoherent background,
in particular close to the (π, π)-point of the BZ, as shown in Figs. 2, 1
for δ = 0.1. With increasing doping the spin-fluctuation interaction be-
comes weak and the incoherent background decreases, as shown in Fig. 3
for δ = 0.3. The spectrum of excitations in Fig. 3 is close to that one in
the GMFA. However, at low doping where the self-energy renormalization
is strong the spectrum in the GMFA is quite different from those shown in
Fig 1. In particular, a large intensity of excitations at the (π, π)-point of
the BZ appears at much lower energy than in the GMFA due to a shift of
the excitation energy caused by the real part of the self-energy. Therefore,
we can conclude that the self-energy effects are very important in studies
of the QP excitations in the t-J model.

The QP damping determined by the imaginary part of the self-energy (21)
Γ(k, ω) = −(1/π)ImMsf (k, ω) due to spin-fluctuation interaction is plot-
ted in Fig. 4 at doping δ = 0.1. For a larger doping, δ = 0.3, the intensity
of the QP damping decreases and the large FS emerges as in the GMFA.

The results of spectral density close to the FS Asf (k, ω = 0) (28) which
determines the FS are presented in Figs. 5 for low doping. It reveals the
arc-type form which transforms to the large FS for high doping as in the
GMFA. This FS transformation from the arc-type at low doping to the large
FS at high doping is observed in ARPES experiments.

Conclusion
A detailed study of the electronic spectrum and superconductivity for
strongly correlated electronic systems within the microscopic theory for
the extend t − J model is presented. Besides the conventional AFM ex-
change interaction J , the EPI and the intersite Coulomb repulsion are taken
into account. The projection technique was employed to obtain the exact
Dyson equation for the normal and anomalous (pairs) GF’s in terms of
Hubbard operators. The self-energy given by many-particle GF’s was cal-
culated in the SCBA in the second order of interaction. The most important
contribution is induced by the kinematical interaction for the HOs. It re-
sults in strong coupling of electrons with spin fluctuations of the order of
hopping parameter t(q) much larger than the exchange interaction J(q).
Therefore, we suggest that the spin-fluctuation pairing is the mechanism
high-Tc in cuprates.
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