

# The pressure effect on crystal and magnetic structures of van der Waals material

#### O.N. Lis<sup>1,2</sup>, D.P. Kozlenko<sup>1</sup>, S.E. Kichanov<sup>1</sup> and E.V. Lukin<sup>1</sup>

<sup>1</sup>Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia <sup>2</sup>Kazan Federal University, Kazan, Russia



## Introduction





Ferroelectric Magnetic Topological mangetic states Superconducting vdW multi-ferroic devices vdW spintronics van der Waals magnets and their future applications Mass production vdW novel interfacial coupling flexible vdW magnetic films vdW magnetic recording

! Recent studies of two-dimensional forms of van der Waals magnets have shown that the magnetic ordering in them can be maintained at sufficiently high temperatures up to the limit of the atomic monolayer.

Future – the search and creation of various heterostructures with potential use in spintronics and other related fields





# Introduction

The general atomic structure of CrX<sub>3</sub>, where the Cr atoms, are arranged in a honeycomb plane, are surrounded by six halide atoms in an octahedral geometry. In general, CrX<sub>3</sub> possess relatively strong in-plane exchange coupling but weak interlayer coupling, thus allowing their magnetism to be stabilized in the monolayer regime.



The crystallographic structure of monolayer of CrBr<sub>3</sub> and the phase diagram vs temperature and magnetic field.



**Pressure-induced** changes in the layer stacking order is found to result in new magnetic ground states in two-dimensional insulating  $Crl_3$ .

**!!!** A significant advantage of 2D materials is that their physical properties are highly tunable by means of external control parameters that include temperature, electrostatic doping, pressure, strain

## **Experimental methods: Neutron diffractometer DN-6**



Experimental hall of the IBR-2 reactor with 14 neutron output channels and the layout of the DN-6 diffractometer

High-pressure cell with sapphire anvils

## **Experimental methods : X-ray и Raman**

LabRAM HR Evolution spectrometer with a wavelength excitation of 632.8 nm emitted from He–Ne laser, 1800 grating. The low-temperature Raman measurements were carried out using low vibration helium refrigerator in temperature range 19–300 K.



#### Xeuss 3.0

Cu radiation ( $\lambda = 1.54184$  Å) Mo radiation ( $\lambda = 0.71078$  Å)





High-pressure cell with diamond anvils

## **Neutron diffraction at low temperature**



Kozlenko, D.P., Lis, O.N., Kichanov, S.E. et al. npj Quantum Mater. 6, 19 (2021)







- a) The thermal expansion of  $CrBr_3$  lattice is strongly anisotropic with the pronounced variation of the c lattice parameter.
- b) The interatomic intralayer and interlayer Cr–Cr distances decrease slightly on cooling in the temperature range above  $T_C$ and they also demonstrate opposite increasing trend for T <  $T_C$

6

### **Raman spectroscopy at low temperature**



150

50

0

100

*T* (K)

100

*T* (K)

150

50

0

minimum in the vicinity of  $T_c$  and demonstrate anomalous reversal broadening in the T <  $T_c$  range. Both effects reveal a presence of the strong spin–phonon coupling in  $CrBr_3$ . The spin–phonon coupling is associated with the modification of the magnetic exchange interactions caused by the ionic motions

## Neutron diffraction at high pressure and low temperature

Neutron diffraction patterns of CrBr<sub>3</sub> measured at selected pressures, room and low temperatures.



The negative volume thermal expansion in CrBr<sub>3</sub> persists even with the application of high pressure



## Neutron diffraction at high pressure and low temperature



The obtained temperature dependences of the Cr magnetic moment of ferromagnetic FM phase at different pressures

The Curie temperatures of the CrBr<sub>3</sub> as a function of the pressure

#### X-ray diffraction of CrBr<sub>3</sub> The baric dependences of the unit cell parameters



Intensity (arb. units)

#### Raman spectroscopy of CrBr<sub>3</sub> at high pressure



<sup>300</sup> Raman

**(cm<sup>-1</sup>)** 

## **Summary**

➤The negative volume thermal expansion was observed below the Curie temperature in CrBr<sub>3</sub>, as well as obvious anomalies in the interatomic distances, Raman shifts and corresponding full-width at half-maximum (FWHM) dependences, which is due to a complex interplay between spin and lattice degree of freedom.

The same effect have been revealed also at high pressure (up to 2.8 GPa). In addition, high pressures lead to significant changes in the dependences of the parameters and unit cell volume but changing the symmetry. It was also obtained the pressure dependences of Cr magnetic moment and Curie temperature for this compound. X-ray diffraction and Raman spectroscopy at high-pressure allow to reveal significant changes and at higher pressure CrBr<sub>3</sub> approaches to its metallic state.

# Thank you for your attention!

