The XXVI International Scientific Conference of Young Scientists and Specialists (AYSS-2022)

Phase transition of nanostructured zinc ferrite spinel at high pressure

N.M. Belozerova, D.P. Kozlenko, S.E. Kichanov, E.V. Lukin and B.N. Savenko

Dubna, 2022

Plan

1. What are complex oxides of iron?

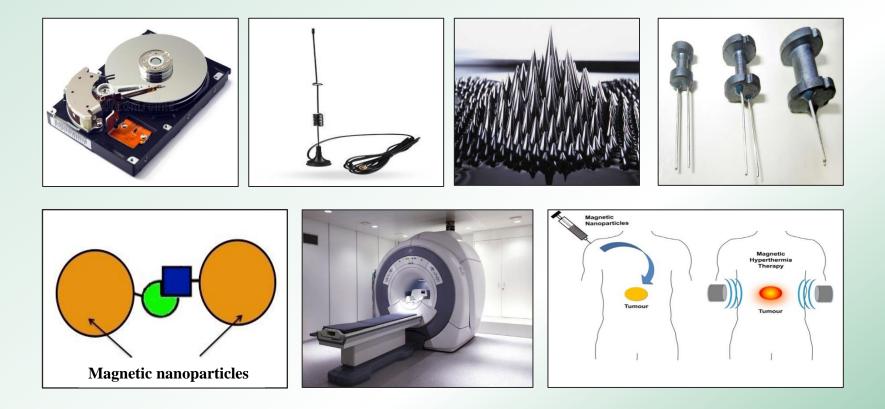
- Ferrites are perspective compounds
- Brief description of structure and physical properties of complex oxides of iron

2. Neutron diffraction experiment

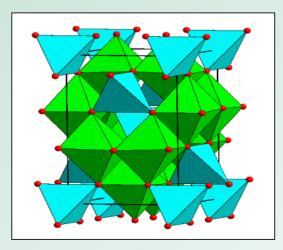
- Experimental method
- \bullet Crystal and magnetic structure of $Zn_{0.34}Fe_{2.53}O_4$ in wide temperature range

3. X-ray diffraction experiment

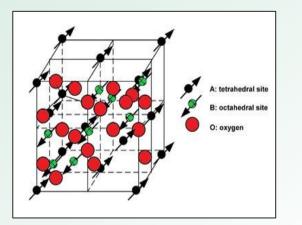
- Experimental method
- •Crystal structure of $Zn_{0.34}Fe_{2.53}O_4$ in wide pressure range


Summary

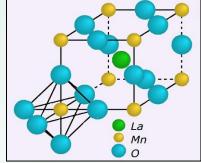
Complex iron oxides applications

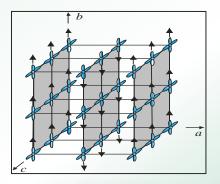

 Significant saturation magnetization

✓ High electrical resistivity


✓ Low electrical losses✓ High chemical stability

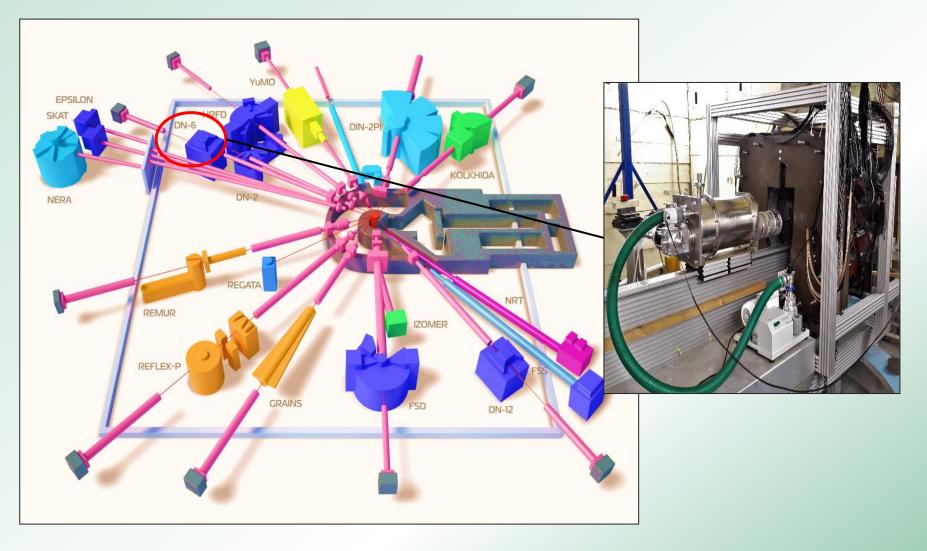
Structure and properties of complex iron oxides

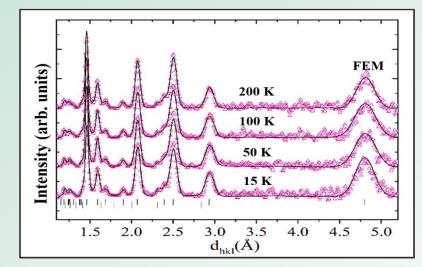

The spinel structure (AB_2O_4) is represented by the densest face-centered cubic lattice. Metal cations are distributed between two crystallographic positions: **tetrahedral** (A-site) and octahedral (B-site).



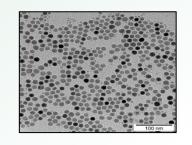
The magnetic properties of spinel ferrites is forming by the exchange interaction between the electrons of the ions in the A and B sublattices. Usually, the A - B interaction is the strongest. The A - A interaction is almost ten times weaker, and the B - B interaction is the weakest. The dominant interaction A - B leads to ferrimagnetic ordering.

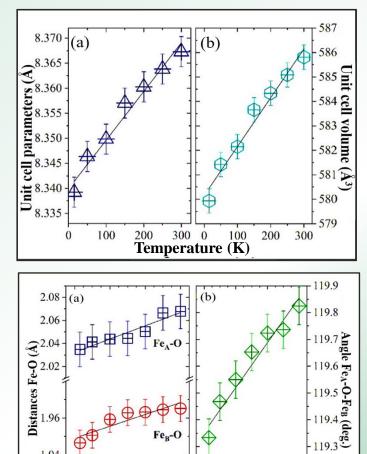
Experimental method: Neutron Diffraction


- Neutron is **sensitivity to the light atoms** such as oxygen. It is give as opportunity to determine location of oxygen with precision.
- Another advantage of the neutron is **sensitivity to the magnetic structure** and dynamics of the magnetic substance.
- An important is the **high penetrating power of neutrons**, which gives opportunities for working with highpressure cells and devices for changing the temperature on the sample.



Experimental method: Neutron diffractometer DN-6


Crystal structure of ferrite Zn_{0.34}Fe_{2.53}O₄ in wide temperature range


T, K

$(Fe^{3+}_{0.82}Zn^{2+}_{0.18})[Fe^{3+}_{1.44}Fe^{2+}_{0.27}Zn^{2+}_{0.16}\Box_{0.13}]O_4$

Unit cell parameters		
a, Å		8.331(3)
α, K ⁻¹		1.26(2) .10-5
Atomic occupations		
A site:	Zn	0.18(1)
	Fe	0.82(2)
B site:	Zn	0.16(1)
	Fe	1.71(3)
	vacancy	0.13(2)

Fep-(

300 0

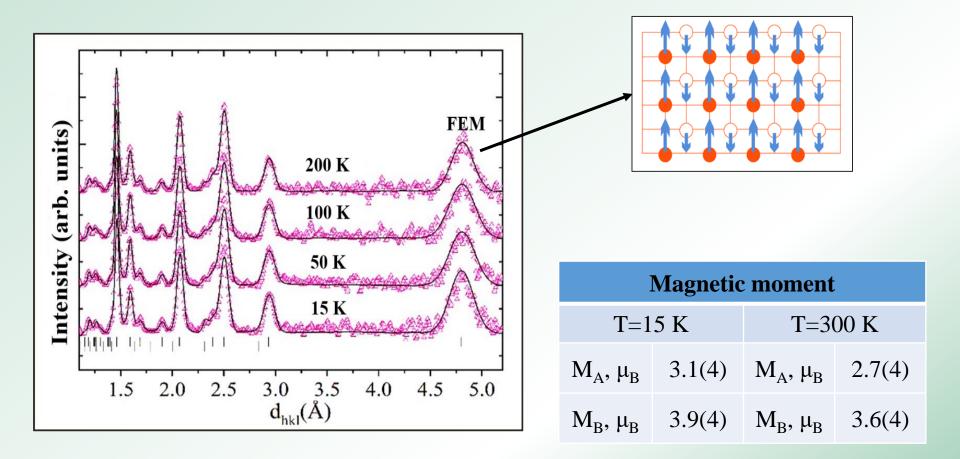
Temperature (K)

100

200

100

+119.2

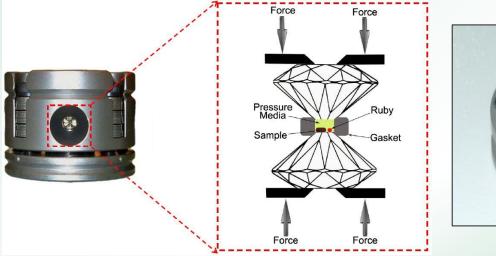

200 300

1.94

0

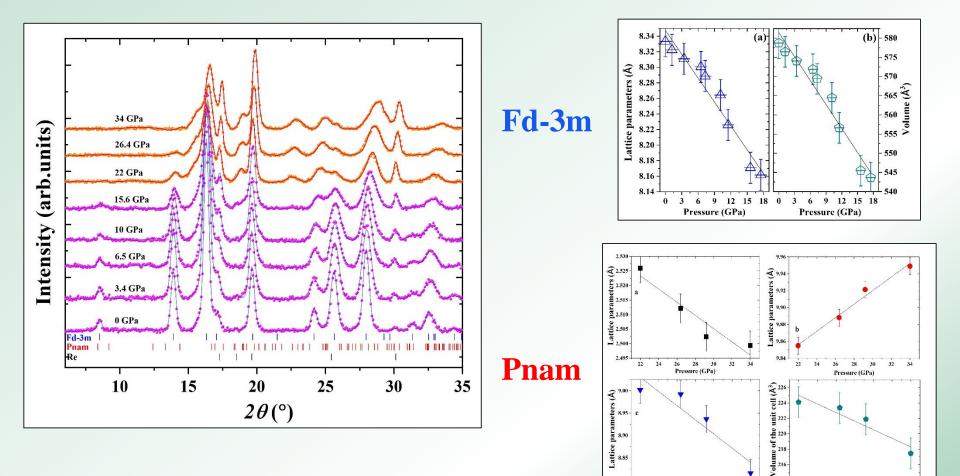
Belozerova N.M., Kichanov S.E., Kozlenko D.P., et al., Neutron diffraction study of the crystal and magnetic structures of nanostructured Zn_{0.34}Fe_{2.53}O₄ ferrite. Journal of Nanoparticle Research, 22(5), 1-9 (2020).

Magnetic structure of ferrite Zn_{0.34}Fe_{2.53}□_{0.13}O₄ in wide temperature range



Belozerova N.M., Kichanov S.E., Kozlenko D.P., et al., Neutron diffraction study of the crystal and magnetic structures of nanostructured $Zn_{0.34}Fe_{2.53}O_4$ ferrite. *Journal of Nanoparticle Research*, 22(5), 1-9 (2020).

Experimental methods: X- ray diffraction under high pressure



Maximum pressure is 50 GPa

Crystal structure of ferrite Zn_{0.34}Fe_{2.53}□_{0.13}O₄ in wide temperature range

10

32 34

214

22

24

26 28 30

Pressure (GPa)

8.80

22 24 26 28 30 32 34

Pressure (GPa)

Summary

- **1.** Crystal structure of ferrite $Zn_{0.34}Fe_{2.53}\Box_{0.13}O_4$ presented by the mixed spinel cubic structure with space group Fd-3m remains stable in all studied temperature. The most important parameters of crystal structure were obtained.
- 2. The presence of vacancies in octahedral positions of the crystal structure of nanostructured ferrite $Zn_{0.34}Fe_{2.53}\Box_{0.13}O_4$ was established.
- **3.** Magnetic structure of nanostructured ferrite $Zn_{0.34}Fe_{2.53}\square_{0.13}O_4$ presented by **ferrimagnetic** ordering **remains stable** in wide temperature range.
- **4. Phase transition** from initial phase with cubic structure (Fd-3m) to high pressure phase with orthorhombic structure (Pnam) was found in ferrite $Zn_{0.34}Fe_{2.53}\Box_{0.13}O_4$ at pressure above 18GPa.

Thank you for attention!

E-mail:

nmbelozerova@jinr.ru

Used article:

Belozerova N.M., Kichanov S.E., Kozlenko D.P., et al. Neutron diffraction study of the crystal and magnetic structures of nanostructured $Zn_{0.34}Fe_{2.53}O_4$ ferrite// Journal of Nanoparticle Research. – 2020. – T. 22. – No. 5. – C. 1-9.

J Nanopart Res (2020) 22:121 https://doi.org/10.1007/s11051-020-04852-4

RESEARCH PAPER

Neutron diffraction study of the crystal and magnetic structures of nanostructured Zn_{0.34}Fe_{2.53}O₄ ferrite

N. M. Belozerova 💿 · S. E. Kichanov · D. P. Kozlenko ·

O. Kaman · Z. Jirák · E. V. Lukin · B. N. Savenko