

Linear and non-linear methods applied to fitting non-isothermal kinetic curves of dehydration of PAAG hydrogel swollen to equilibrium and non-equilibrium state

Darija Petković

Hydrogels

- Three-dimensional crosslinked polymeric structures.
- They are able to absorb significant amounts of water, water solutions and biological liquids, without dissolowing or losing their structural integrity.

Hydrogels can be used:

- Agriculture
- Drug delivery systems
- Hygenic products
- Tissiue engineering
- Biosensors
- Systems for aqueous pollutants removal

 The widest practical applications of the hydrogels are based on their ability to reversibily abosrb (swelling) and release (dehydrate) water.

Poly(acrylic acid)-g-gelatin (PAAG) hydrogel

Synthesis:

- 1. 0.5g of gelatin was dissoloved in 35ml distilled water at 318K under stirring, until clear, homogenous solution is obtained.
- 2. Water solution of the initiator VA-044 was added to gelatin solution and left for 15 min under stirring.
- 3. Acrylic acid (AA) was neutralized to pH=7 by adding KOH (aq.) under cooling (278K) with constat stirring.
- 4. Cross-linker solution was added to the gelatin-initiator solution.
- 5. The mixture of neutralized AA and cross-linker was added to the gelatin-initiator solution.
- 6. The reaction mixture was once again rapidly stirred, immediately poured into Teflon mold, and placed in an oven at 353 K, for 3h.

- The resulting gel-type products were cut into disks, and washed out with distilled water to remove the sol fraction. The water was changed every 2-3 h for 7 days.
- 8. After that, the washed-out hydrogels were air dried in an oven at 353 K until constant mass was attained.
- 9. The obtained products PAAG xerogels were stored in a vacuum exicator until use.
- 10. For this investigation the obtained PAAG xerogels were allowed to swell to varyng swelling degree in distilled water at room temperature.

Thermogravimetric measurements

Figure1. Obtained curves for non-isothrermal dehydratition of (1:1) PAAG hydrogel at different heating rates: a) the thermogravimetric curves, b) the conversion curves and c) the differential conversion curves

Figure 2. Obtained curves for non-isothrermal dehydratition of (1:10) PAAG hydrogel at different heating rates: a) the thermogravimetric curves, b) the conversion curves and c) the differential conversion curves

Figure 3. Obtained curves for non-isothrermal dehydratition of equilibrium swollen PAAG hydrogel at different heating rates: a) the thermogravimetric curves, b) the conversion curves and c) the differential conversion curves

The mechanisms and kinetics of the dehydration PAAG hydrogel

- The mechanism and kinetics of dehydration of hydrogels is not known enouh or is not well explained.
- The main goal of this work was to describe the kinetics of non-isothermal dehydration of poly(acrilic acid)-g-gelatin (PAAG) hydrogel that was swollen in distilled water to different swelling degrees.

The Weibull distribition function of reaction times:

$$\alpha = 1 - \exp\left(-\left(\frac{T - T_0}{v_{\rm h}\eta}\right)^{\beta}\right)$$

Where is:

 α – degree of dehydration

T, T_0 - current and initial temperatures of the non-isothermal dehydration respectively

 $v_{\rm h}\,$ - heating rate

 β , η – the Weibull distribution parameters

Calculation of the Weibull parameteres by linear fitting of conversion curves

Linear form of the Weibull distribution fuction:

$$n[-\ln(1-\alpha)] = \beta \ln\left(\frac{1}{\eta}\right) + \beta \ln\left(\frac{T-T_0}{v_h}\right)$$
$$\ln[-\ln(1-\alpha)] = f\left(\ln\left(\frac{T-T_0}{v_h}\right)\right)$$

• The Weibull parameters β and η are calulated from slope and intercept respectively.

Figure 4. Determination of the Weibull parameters for (1:1) PAAG hydrogel at different heating rates: a) 5 K/min b) 10 K/min i c) 20 K/min

Table 1. The values of the Weibull parameters obtained by linearization of conversion curves for (1:1) PAAG hydrogel at different heating rates and the coefficient of determination R^2

Heating rate			
v_h (K/min)	β	η	R ²
5	2,28 ± 0,01	13,68 ± 0,01	0,989
10	2,28 ± 0,01	7,72 ± 0,01	0,993
20	2,27 ± 0,01	4,71 ± 0,01	0,989

Figure 5. Determination of the Weibull parameters for (1:10) PAAG hydrogel at different heating rates: a) 5 K/min b) 10 K/min i c) 20 K/min

Table 2. The values of the Weibull parameters obtained by linearization of conversion curvesfor (1:10) PAAG hydrogel at different heating rates and the coefficient of determination R²

Heating rate v_h (K/min)	β	η	R ²
5	2,68 ± 0,01	13,54 ± 0,01	0,951
10	2,79 ± 0,01	7,38 ± 0,01	0,975
20	2,92 ± 0,01	4,65 ± 0,01	0,967

Figure 6. Determination of Wibull parameters for equilibrium swallen PAAG hydrogel at different heating rates: a) 5 K/min b) 10 K/min i c) 20 K/min

Table 3. The values Weibull parameters obtained by linearization of conversion curves for equilibrium swallen PAAG hydrogel at different heating rates and the coefficient of determination R²

Heating rate v _h (K/min)	β	η	R ²
5	2,91 ± 0,01	13,15 ± 0,01	0,951
10	2,87 ± 0,02	7,04 ± 0,01	0,961
20	2,93 ± 0,02	4,37 ± 0,01	0,962

Obtaining the Weibull parameteres by non-linear fitting of conversion curves

Figure 7. Nonlinear fitting of the Weibull function for (1:1) PAAG hydrogel at different heating rate: a) 5K/min, b) 10K/min and c) 20K/min

Table 4. Comparison of the Weibull parameters at different heating rates, obtained by linear and non-linear fitting for (1:1) PAAG hydrogel

	Linear	fitting	Non-linear fitting		
Heating rate					
$v_h(K/min)$	β	η	β	η	
5	2,28 ± 0,01	13,68 ± 0,01	1,42	14,79	
10	2,28 ± 0,01	7,72 ± 0,01	1,73	9,11	
20	2,27 ± 0,01	4,71 ± 0,01	1,64	5,88	

The value of the parameter β , when applying non-linear regression analysis, is lower than the corresponding value for linear regression analysis.

The value of the parameter η , is higher when applying non-linear regression analysis than the corresponding value for linear regression analysis.

Figure 8. Nonlinear fitting of the Weibull function for (1:10) PAAG hydrogel at different heating rate: a) 5K/min, b) 10K/min and c) 20K/min

Table 5. Comparison of the Weibull parameters at different heating rates, obtained by linear and nonlinear fitting for (1:10) PAAG hydrogel

	Linear	fitting	Non-linear fitting		
Heating rate					
$v_h(K/min)$	β	η	β	η	
5	2,68 ± 0,01	13,54 ± 0,01	1,96	13,06	
10	2,79 ± 0,01	7,38 ± 0,01	2,22	8,37	
20	2,92 ± 0,01	4,65 ± 0,01	2,48	5,79	

Figure 9. Nonlinear fitting of the Weibull function for equilibrium swallen PAAG hydrogel at different heating rate: a) 5K/min, b) 10K/min and c) 20K/min

Table 6. Comparison of the Weibull parameters at different heating rates, obtained bylinear and nonlinear fitting for equilibrium swallen PAAG hydrogel

	Linear	fitting	Non-linear fitting		
Heating rate					
$v_h(K/min)$	β	η	β	η	
5	2,91 ± 0,01	13,15 ± 0,01	2,34	12,47	
10	2,87 ± 0,02	$7,04 \pm 0,01$	2,28	8,11	
20	2,93 ± 0,02	4,37 ± 0,01	2,45	5,57	

Table 7. Comparison of the Weibull parameters at different heating rates, obtained by linear fitting conversion curves for different swelling degrees of PAAG hydrogel

	(1:1) PAAG		(1:10) PAAG		Equilibrium swollen PAAG	
Heating rate $v_h(K/min)$	β	η	β	η	β	η
5	2,28 ± 0,01	13,68 ± 0,01	2,68 ± 0,01	13,54 ± 0,01	2,91 ± 0,01	13,15 ± 0,01
10	2,28 ± 0,01	7,72 ± 0,01	2,79 ± 0,01	7,38 ± 0,01	2,87 ± 0,02	7,04 ± 0,01
20	2,27 ± 0,01	4,71 ± 0,01	2,92 ± 0,01	4,65 ± 0,01	2,93 ± 0,02	4,37 ± 0,01

- The values of the parameter β at all investigated heating rate increase when the value of swelling degree increase.
- The values of the parameter η at all investigated heating rate decrease when the value of swelling degree increase.

Table 8. Comparison of the Weibull parameters at different heating rates, obtained by non-linear fitting conversion curves for different swelling degrees of PAAG hydrogel

	(1:1) PAAG		(1:10) PAAG		Equilibrium swollen PAAG	
Heating rate $v_h(K/min)$	β	η	β	η	β	η
5	1,42	14,79	1,96	13,06	2,34	12,47
10	1,73	9,11	2,22	8,37	2,28	8,11
20	1,64	5,88	2,48	5,79	2,45	5,57

Conclusions:

- It was found, that the Weibull distribution function of reaction times can successfuly describe the dehydration conversion curves at different heating rates.
- Both examined ways of fitting non-isothermal conversion curves of dehydration of PAAG hydrogel allow fitting of experimental conversion curves.
- The value of the parameter η at all indicated swelling degrees and heating rates is higher when applying non-linear regression analysis than the corresponding value for linear regression analysis while the parameter β has lower values .

- The values of the parameter η at all investigated swelling degrees decrease when the value of the heating rate increase.
- The values of the parameter β are complexly changed with the increase of heating rate.
- In both cases, when we applied linear or non-linear regression method, when swelling degree increases at an identical heating rate, the values of the parameter β increase, and the values of the parameter η decrease.

- The lower quality of fitting in the case of applying the linear regression method is a consequence of the double logarithm applied in this method, which results in an unrealistic increase in the value of the function parameters.
- Changes in the values of parameters β and η with the swelling degrees and the heating rate during the dehydration of PAAG hydrogel indicate a change in the state of absorbed water.

Thank you for your attention!