Light-like paths of anyon in magnetic field

M.A. Bubenchikov, D.S. Kaparulin, O.D. Nosyrev

The XXVI International Scientific Conference of Young Scientists and Specialists

National Reseach Tomsk State University Faculty of Physics Department of Quantum Field Theory

Dubna - 2022

Model

We consider the model of a point classical spinning particle with the mass m and spin s travelling in 3d Minkowski space. Equations of motion in homogeneous magnetic field with the field strength vector H = (H, 0, 0) read [DK, Retuntsev, 2022],

$$\frac{1}{e}\frac{d}{d\tau}\left(x-\rho\frac{[\xi,P]}{(\xi,P)}\right) = \left(1+\frac{1}{2}\frac{(g-2)z\alpha(z)}{g+(g+1)z\alpha(z)}\right)P + \frac{g(g-2)(1+z\alpha(z))\alpha(z)}{g+(g+1)z\alpha(z)}\frac{sH}{2m}; \quad (1)$$
$$\frac{1}{e}\frac{dP}{d\tau} = \left(1-\frac{1}{2}\frac{(g-2)z\alpha(z)}{g+(g+1)z\alpha(z)}\right)\left[P,H\right], \quad (2)$$

Here, ρ - constant with the length dimension, g - gyromagnetic ratio, $\xi = (1, \sin \varphi, \cos \varphi)$. The speed of light c = 1, and electric charge e = 1. The function $\alpha(z)$ is determined by the rule

$$\frac{1}{\alpha(z)} = \cos\left(\frac{1}{3}\arcsin\frac{3\sqrt{3}}{2}z\right) + \frac{1}{\sqrt{3}}\sin\left(\frac{1}{3}\arcsin\frac{3\sqrt{3}}{2}z\right), \qquad z = \frac{gs(P,H)}{2m^3}.$$
 (3)

The particle position is x, the particle extended momentum is p, and φ is angular variable. The Minkowski metric is $\eta_{\mu\nu} = \text{diag}\{-, +, +\}$. The mass shell condition reads

$$(p,p) + \mu^2 = 0, \qquad \mu = m\sqrt{1 + z\alpha(z)}.$$
 (4)

Classical dynamics

The total angular momentum J and spin angular momentum S of the particle are determined by the formula

$$J = \left[x - \rho \frac{[\xi, p]}{(\xi, p)}, p \right] - \frac{s}{m} \alpha(z) p, \qquad S \equiv J - [x, p] = -\left[\rho \frac{[\xi, p]}{(\xi, p)}, p \right] - \frac{s}{m} \alpha(z) p.$$
(5)

The causal evolution is for the components of momentum p, and the special position in spacetime (the mass center),

$$y = x - \rho \frac{[\xi, P]}{(\xi, P)} \,. \tag{6}$$

The variable φ can be arbitrary function of proper time. This is interpreted as the zitterbewegung. All the trajectories with various evolution of angular variable φ are connected by the gauge transformations. In the model (1), (2), the zitterbewegung phenomenon is preserved even at the **interacting** level.

The class of gauge equivalence of particle paths is given by the cylindrical surface of radius ρ centered at the trajectory $y(\tau)$. Depending on the evolution variable φ , the classical trajectories can be time-like, light-like, or space-like. [Nersessian,Ramos,1999; DK, Lyakhovich,2017]

Geometry of particle path

Figure: The trajectory of the particle

Motion of the mass center

It is convenient to solve the equations of motion (1), (20 using 1 + 2 decomposition for the coordinates and momenta, $x = (t, \mathbf{x})$, $y = (t', \mathbf{y})$, $p = m\gamma(1, \beta)$:

$$\boldsymbol{\beta} = \frac{\boldsymbol{p}}{\sqrt{\mu^2 + \boldsymbol{p}^2}}, \qquad \gamma = \frac{1}{\sqrt{1 - \beta^2}}. \tag{7}$$

The equations of motion of the mass center position read

$$\frac{d\beta}{dt'} = \Omega_c \left[\beta, n\right], \qquad \frac{d}{dt'} \left(\frac{H\mathbf{y}}{\gamma\mu}\right) = \Omega_c \beta.$$
(8)

Here, $\mathbf{n} = (1, 0, 0)$, and Ω_c is the cyclotron frequency,

$$\Omega_{c} = \frac{gH\gamma}{\mu} \frac{3\alpha(z)z+1}{(2+(3\gamma^{2}-1)g)z\alpha(z)+g\gamma^{2}} = \frac{H}{m\gamma} \left(1 + \frac{5}{2}z - \frac{2+g(3\gamma^{2}-1)}{g\gamma^{2}}z + o(z)\right).$$
(9)

The general solution to the space trajectory (8) gives a circular path:

$$\boldsymbol{y} = \boldsymbol{y}_0 + \frac{\mu\gamma}{H} \left[-\beta_0 \sin(\Omega_c y^0) + [\beta_0, n] \cos(\Omega_c y^0) \right]. \tag{10}$$

Light-like paths of anyon

The light like trajectories of anyon are determined by the condition

$$\left(\frac{dx}{d\tau},\frac{dx}{d\tau}\right) = 0.$$
(11)

In the general case, this condition determines a quadratic equation with respect to the derivative of the angular variable $d\varphi/d\tau$.

In the weakly relativistic limit, relation (12) takes the form

$$\frac{d\varphi}{dt'} = \Omega_c(\boldsymbol{\xi}, \boldsymbol{\beta}) \pm \frac{1}{\rho} \left[1 + (\boldsymbol{\xi}, \boldsymbol{\beta})(\Omega_c \rho - 1) \right] + o(\boldsymbol{\beta}).$$
(12)

Here, Ω_c is the cyclotron frequency. The plus-minus sign determines two possible values of helicity of path. The corresponding trajectories are right handed and left-handed "helical" lines.

In the free limit, the trajectories of particle are left-handed and right-handed helical lines with a light-like tangent vector.

Non-relativistic light-like trajectories

The non-relativistic model is characterised by the condition $\beta \ll 1$. In this setting we have identification t = t', and

$$\mathbf{x} = \mathbf{y} + \rho(\mathbf{i}\cos\varphi - \mathbf{j}\sin\varphi), \qquad \mathbf{i} = (1,0), \qquad \mathbf{j} = (0,1).$$
 (13)

The variable ϕ is linear function of time,

$$\frac{d\varphi}{dt} = \pm \frac{1}{
ho} \implies \qquad \varphi(t) = \pm \frac{t}{
ho} + \varphi_0.$$
 (14)

Thus, we have the following solution for the trajectory $\mathbf{x}(t) = (x^1(t), x^2(t))$ in space,

$$x^{1} = \frac{\mu}{H} \left(\beta_{0}^{2} \cos(\Omega_{c} t) - \beta_{0}^{1} \sin(\Omega_{c} t)\right) + y_{0}^{1} + \rho \cos(\frac{t}{\rho} + \varphi_{0}); \qquad (15)$$

$$x^{2} = \frac{\mu}{H} \left(\beta_{0}^{1} \cos(\Omega_{c} t) - \beta_{0}^{2} \sin(\Omega_{c} t)\right) + y_{0}^{2} \mp \rho \sin\left(\frac{t}{\rho} + \varphi_{0}\right).$$

$$(16)$$

The dynamics of each coordinate is a bi-harmonic oscillation with frequencies Ω_c and $1/\rho$. The trajectory is closed if $\rho\Omega_c \in Q$.

Figure: $\beta_0 = 0.2$, $\Omega_c = 1$, $\rho = 0.02$, left-handed

Figure: $\beta_0 = 0.2$, $\Omega_c = 1$, $\rho = 0.02$, right-handed

Figure: $\beta_0=$ 0.21, $\Omega_c=$ 1.05, ho= 0.02, 1.3 turns

Figure: $\beta_0 = 0.21$, $\Omega_c = 1.05$, $\rho = 0.02$, 2.3 turns