Spin nature of the energy gap in superconductors of the second kind

Introduction

The paper discusses the estimation of the second critical field through a superconducting gap.
The second critical field is evaluated in two ways.

- The first one is thermodynamical. There is a Clogston' s estimation of the second critical field $H_{c 2}=1,84 \cdot T_{c}$
The second one is coherence length. There is an expression $H_{c 2}=\frac{\Phi_{0}}{2 \pi \xi^{2}}$, where $\Phi_{0}=\frac{\pi \hbar c}{e}-$ quantum of magnetic flow, $\xi-$ coherence length.
In this work an estimate of the field is obtained with Zeeman's effect of splitting energy levels of cooper pairs

Methodology

In essence, 4 quantum states of paired electrons are possible, differing in spin projections, forming an orthonormal basis in the state space:

$$
\begin{aligned}
& \mid++> \\
& \mid+-> \\
& \mid-+> \\
& 1-->
\end{aligned}
$$

To characterize the state of an isolated system of two electrons, we introduce the Hamilton operator. In the model we consider difference in energies due to spin only with magnetic field:

$$
\widehat{H}=A \widehat{\sigma_{1}} \widehat{\sigma_{2}}-\mu_{B 1} \sigma_{1} B-\mu_{B 2} \sigma_{2} B, \text { where }
$$

$\widehat{\sigma_{1}}, \widehat{\sigma_{2}}-$ spin operators for both particles and
$\mu_{B 1}, \mu_{B 2}$ - Bohr magnetons for both particles,
$A=\frac{\Delta}{4}$ the energy difference of the two states with $B=0$.
Due to the orthogonality of the basis vectors to each other, we have the following matrix:
$H=\left(\begin{array}{cccc}A-\mu_{B 1} B-\mu_{B 2} B & 0 & 0 & 0 \\ 0 & -A-A\left(\mu_{B 1}-\mu_{B 2}\right) B & 2 A & 0 \\ 0 & 2 A & -A+A\left(\mu_{B 1}-\mu_{B 2}\right) B & 0 \\ 0 & 0 & 0 & A+\mu_{B 1} B+\mu_{B 2} B\end{array}\right)$ We are looking for a solution to the Schrodinger's equation in the form $\Psi(\vec{x}, t)=\psi(\vec{x}) \cdot e^{-i \omega t}$. Then our task is reduced to stationary and we obtain the following distribution of energy by states:

$$
\begin{aligned}
& E_{1}=A-\left(\mu_{B 1}+\mu_{B 2}\right) B \text { for }|1>=|++> \\
& E_{2}=A+\left(\mu_{B 1}+\mu_{B 2}\right) B \text { for }|2>=|--> \\
& E_{3}=A(-1+2 C) \text { for } \left\lvert\, 3>=\frac{1}{\sqrt{2}}(|+->+|-+>)\right. \\
& E_{4}=-A(1+2 C) \text { for } \left\lvert\, 4>=\frac{1}{\sqrt{2}}(|+->-|-+>)\right. \text {, } \\
& \text { where } C=\sqrt{1+\left(\mu_{B 1}-\mu_{B 2}\right)^{2} \cdot \frac{B^{2}}{4 A^{2}}} \text {. }
\end{aligned}
$$

G. Y. Krugan, A. V. Matasov

NATIONAL RESEARCH UNIVERSITY «MOSCOW POWER ENGINEERING INSTITUTE»

Results

Thus, we offer to estimate the second critical field $B_{c 2}$ through the intersection of the curves E_{1} and E_{4} of the energy diagram like curves of two different energy conditions with $B=0$. If you equate energy curves and try to find the point of their intersection, you can find out a new estimate for the second critical field:

$$
B_{c 2}=A \frac{\left(\mu_{B 1}+\mu_{B 2}\right)}{\mu_{B 1} \mu_{B 2}}
$$

Superconducting materials. Estimate with $\Delta=2 k T_{c}$

Material	$T_{c}, \mathrm{~K}$	$B_{c 2}^{\text {theor }}, \mathrm{T}$	$B_{c 2}^{\text {exper }}, \mathrm{T}$
NbTi	9,6	14,29	14
$\mathrm{Nb}_{3} \mathrm{Ge}$	23,2	34,54	38
$\mathrm{Nb}_{3} \mathrm{Sn}$	18,3	27,23	24
$\mathrm{La}_{1,85} \mathrm{Sr}_{0,15} \mathrm{CuO}_{4}$	38	56,55	62
$\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$	93	138,39	120
$\mathrm{HgBa}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10}$	135	200,88	190
$\mathrm{Rb}_{3} \mathrm{C}_{60}$	29,5	43,89	44
$\mathrm{K}_{3} \mathrm{C}_{60}$	19,5	29,02	30
$\mathrm{MgB}_{2}(\xi=51 \mathrm{~nm})$	39	58,03	39
$\mathrm{PbMo}_{6} \mathrm{~S}$	15	22,32	60
ZrV ${ }_{2}$	8,5	12,65	16,5
NbN	16	23,82	22

with Bohr magneton for both particles (two electrons or electron and positron).
So for similar particles in Cooper pair, for example, electrons we have:

$$
B_{c 2}=\frac{2 A}{\mu_{B}}
$$

Let's remember, that $A=\frac{\Delta}{4}=\frac{\mu_{B}}{2}$. So it turns out to $B_{c 2}=\frac{k T_{c}}{\mu_{B}}$, which is similar with Klogston' s estimation.

Conclusion

Thus, the received estimate for superconductors' second critical field sufficiently consistent with experimental data for compounds from the table: superconducting alloys, metallic compounds, fullerides, nitride and Laves phase. The estimation is not good in accuracy of calculations for Chevrel phase and MgB_{2}.

According to the research we have an analogy between condensed, uncondensed Cooper pair and model of Zeeman's splitting of energy levels of the pair.

