Cost-effective automatization of the experiment

N.A. Fedorov, FLNP JINR

Motivation

About 4 month ago there was an interesting AYSS seminar, dedicated to the physical experiment monitoring
 (speaker: D. Egorov, LHEP JINR)

DS18B20 temperature sensor 15 RUB (0,3 USD) (from China) Raspberry pi 3 microcomputer 7700 RUB (130 USD) (from China)

* Изображения служат только для ознакомления,

✓ 43 шт. со склада г.Москва
 Весплатная доставка

21 300 ₽

Добавить в корзину 1 шт. на сум

Добавить в корзину

Motivation

• There are two variants:

Solution?

	Raspberry Pi 4	Arduino nano	Cheap AVR (Atmega8)	ESP 8266	ESP32
Price	>100 USD	4-20 USD	1-10 USD	1-12 USD	2-5 USD (!)
CPU	4x1.5GHz 64bit ARM	1x16MHz 8bit Atmega	1x8MHz 8bit Atmega	1x80MHz 32bit Tensilica	2x240MHz 32bit Tensilica
RAM	≥2GB	2kB	1kB	112kB	520kB
Memory	>8GB	32kB	8kB	4MB	4MB
GPIO	26	19	23	10	30
Built-in ADC	X	10bit x 6 ch	10bit x 6 ch	10bit x 1 ch	12bit x 18ch
Native USB	٧	X	X	X	X
Ethernet	٧	×	X	X	X
Wi-Fi	γ	x	X	٧	٧

Computing power is not so important for sensors and simple devices

 Communication interfaces are needed for data transfer from sensors to logging/control server

Tasks for automatization in the TANGRA project

Core of developed devices

- ESP8266 (ESP12 variant) was chosen as a "brain" of developed devices
- ESP8266 is a compact module suitable for soldering
- MCU uses a 4 MB external flash memory for firmware and data
- It is possible to extend flash memory of replace broken one (but we never tried)

Printed circuit board (PCB) manufacturing

 Laser printer toner transfer
 using iron and ads paper (Eco-friendly!)

in the hydrogen peroxide and citric acid solution

• Etching

• Assembled PCB

Printed circuit board (PCB)

 There is a massive corrosion on non-tinned PCB after 6 month of usage at 70% air humidity

- Always tin all copper surface of PCB!
- In very wet places use fabricated PCB

Communication with PC

language

(Arduino

side

6

826

ES P

side

()

}

- The simplest way to communicate with PC is TCP/IP socket usage
- ESP 8266 can act as client (initiate data transfer) or as server (wait data transfer)
- It is easy to pack data into a char string

```
WiFiClient client;
void loop() {
  //collect data from sensor
```

if (client.connect("159.93.XXX.XXX",8081)) {
 String Message=String(ID)+" P "+String(P)+

```
" T "+String(T) ...;
client.print(Message); }
if(client.available()) {
    String recv_comm=
    client.readStringUntil('\n');}
//do something
```

```
while(1) {
    recv(sock, buf,1024, 0);
    //parsing "buf" and save data
```

Problems

- Low resource of the flash memory (about 60 firmware updates)
- There is no emulator of the ESP8266 (at least I don't know about it)
- Debugging will improve soldering skills :)

Conclusion

- It is plausible to build a low-cost wireless sensor system
 And even remote controlled devices
 But be ready for:
- Interesting work process
- Soldering
- DEBUGGING

• Is a ESP8266/ESP32 a good choice for experiment automatization? Definitely, yes!

Let's automate the conference!

Thank you for your attention! http://159.93.32.81/