

The XXVI International Scientific Conference of Young Scientists and Specialists

The possibility investigation of electron beam deep dose distribution formation by 3D-printed plastic bolus

Student and Engineer of Tomsk Polytechnic University

Elizaveta Bushmina,

A. Bulavskaya, A. Grigorieva, I. Miloichikova, S. Stuchebrov

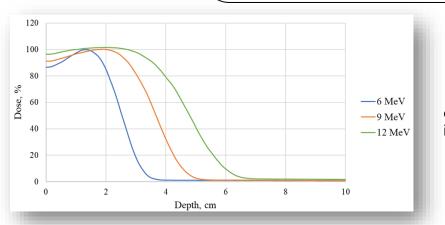
October 2022

Relevance

Methods of treatment of oncological diseases:

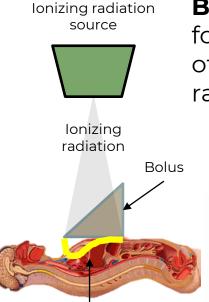
- chemotherapy,
- surgery,
- radiation therapy.

10 millions deaths from cancer diseases in world


Radiation therapy is a method of treatment based on the destructive effect of ionizing radiation on a biological object.

* World Health Organization

TOMSK POLYTECHNIC Electron beam therapy


Electron beam therapy – radiation therapy with electron beam energies from keV to MeV.

Example of percentage deep dose distributions in water phantom with different energies

Introduction

Complicated dose distribution

Boluses are devices for forming the depth distribution of the dose received during radiotherapy procedures.



Examples of bolus application

Introduction

It is proposed to make a plastic bolus for electron beam deep dose distribution formation by 3D-printing methods.

design of the bolus

3D bolus model

Design of a threedimensional bolus model of a complex shape for the case of irradiation of the anterior chest wall

Example of 3D-printer's work

Purpose and tasks

The main purpose of this work was to conduct a study on the formation of a deep dose distribution with plastic bolus and boluses made of standard materials when irradiated with medical electron beams.

Thereby some <u>tasks</u> were made:

1. Determine the chemical composition and mass density of standard materials for the manufacture of boluses used for electron beam therapy;

2. Simulate the depth distribution of the dose in standard materials;

3. Simulate the depth dose distribution in various plastics with different fill factors in order to select a plastic material suitable for making boluses;

4. Simulate the depth dose distribution behind standard materials and plastic suitable for the manufacture of products using 3D printing methods for different electron energies;

5. Make experimental paraffin and plastic bolus samples, investigate their characteristics;

6. Conduct experimental studies on medical electron beams in order to obtain a deep dose distribution in the materials under study;

7. Evaluate the effectiveness of the proposed method of creating boluses in comparison with boluses made from standard materials.

Paraffin

Forming devices

Composition of the standard bolus*

Fraction

	Element	Fraction	
	Carbon	0,63900	
	Oxygen	0,25200	
	Hydrogen	0,09920	
	Nitrogen	0,00922	
	Tin	0,00026	
Action Bolx	Silicone	0,00053	
			•
Co	mposition of t	the paraffin bol	us

Element	Fraction
Carbon	0,32666
Hydrogen	0,67333

The measured density of the Action Bolx bolus was 1,01 g/cm³.

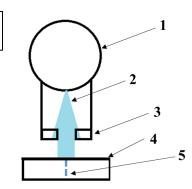
Disadvantages:

- the simplicity of their shapes;
- the import material.

The measured density of the **paraffin** bolus was 1,009 g/cm³.

<u>Disadvantages:</u>

- fragility;
- heterogeneity.


Numerical simulation of PDD

Numerical simulation of electron beams percentage deep dose distributions was carried out using the Geant4 toolkit.

TOMSK POLYTECHNIC UNIVERSITY

2

Electron beam simulated percentage deep dose distributions in plastic samples 6 MeV: (a) ABS, (b) PLA and (c) HIPS plastics

- The geometry of the calculation in the Geant4:
- 1 electron source;
- 2 electron beam;
 - 3 applicator;
 - 4 bolus;
 - 5 beam axis

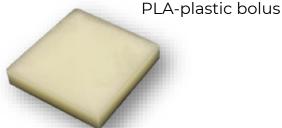
Numerical simulation of PDD

3 Electron beam simulated percentage deep dose distributions in bolus

materials

Based on the data obtained, it was found that **PLA-plastic with fill factor = 84%** is suitable for the manufacture of boluses.

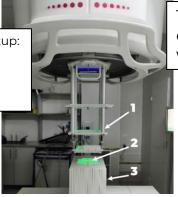
Electron beam simulated percentage deep dose distributions in water phantom formed by 1 cm bolus materials


Electron energy: (a) 6 MeV, (b) 12 MeV, (c) 15 MeV

Fabrication of plastic bolus from PLA-plastic

The plastic sample was made using a Flashforge Creator 3 — 3D printer, based on the use of layer-by-layer deposition technology. The product was printed with **84%** coverage of the material by volume of the product.

For the manufacture of the bolus **PLA-plastic** was used, which has the highest physical and X-ray density, that is, a smaller thickness is required for the necessary absorption of the beam, unlike other types of plastics. The measured density of the plastic bolus was **1,01 g/cm³**.

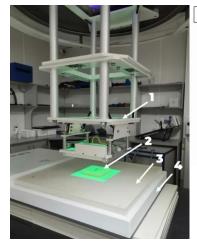


Printing parameters: filament thread diameter - 1.75 mm, layer thickness - 0.3 mm, nozzle diameter - 0.4 mm, print speed - 40 mm / min, nozzle temperature - 215 °C, table temperature - 90°C.

Experimental part

Experimental setup: 1 – applicator; 2 - bolus; 3 – solid-state phantom

The data obtained confirm that the experimental studies coincided with the numerical simulations.


Electron energy: (a) 6 MeV, (b) 12 MeV, (c) 15 MeV

Electron beam experimental percentage deep dose distributions in solid-state phantom formed by 1 cm bolus 12 MeV: (a) Action Bolx, (b) PLA plastic, (c) paraffin

Experimental part

 6 MeV electron beam experimental profiles in solid-state phantom

Experimental setup: 1 - applicator; 2 - bolus; 3 - solid-state phantom; 4 - detector MatriXX Evolution

Conclusion

- A study was conducted on the formation of a deep dose distribution with plastic bolus and boluses made of standard materials when irradiated with medical electron beams.
- According to the obtained results of measuring the absolute dose, it can be said that boluses made of PLA-plastic and standard materials are shielded equally within the error.
- The production of boluses from PLA-plastic by 3D printing has shown its effectiveness at the stages of numerical modeling and experimental studies.

The XXVI International Scientific Conference of Young Scientists and Specialists

The possibility investigation of electron beam deep dose distribution formation by 3D-printed plastic bolus

Thank you for your attention! <u>Contacts:</u> eab60@tpu.ru Student and Engineer of Tomsk Polytechnic University

Elizaveta Bushmina,

A. Bulavskaya, A. Grigorieva, I. Miloichikova, S. Stuchebrov