Joint fit of long-baseline accelerator neutrino experiments in GNA software

Anna Stepanova^{1,2}

¹Lomonosov Moscow State University ²Dzhelepov Laboratory of Nuclear Problems, JINR

October, 26, 2022

Neutrino oscillations in matter

Neutrino mixing:

$$\nu_{\alpha} = \sum_{i=1}^{3} \mathsf{U}_{\mathsf{PMNS}} \cdot \nu_{i}, \ \alpha = e, \ \mu, \ \tau$$

- ν_{α} a mass eigenstate
- ν_i a flavor eigenstate

Mixing matrix:

 $U_{PMNS} \sim \theta_{12}, \ \theta_{13}, \ \theta_{23}, \ \delta_{CP}$

Oscillation probability depends on:

- parameters of U_{PMNS}
- mass squared differencies: $\Delta m_{12}^2, \ \Delta m_{13}^2 / \Delta m_{23}^2$
- neutrino mass ordering: sign Δm_{23}^2
- the matter density ρ
- a ratio of an experiment baseline and the neutrino energy $\frac{L}{E}$

Neurtino types

(for studying neutrino oscillations):

- atmospheric
- accelerator
- reactor
- solar

Long-baseline accelerator neutrino experiments

Global Neutrino Analysis. Developed in DLNP, JINR

GNA is for carrying out a neutrino oscillation analysis with neutrinos of different types.

The GNA structure is:

- transformations for computational calculations implemented via C++ and ROOT CERN
- Python modules for experiment modeling
- a block structure integrated in a graph
- functions for the statistical analysis

▶ < ∃ >

GNA shell of long-baseline accelerator neutrino experiments

A config. file includes:

- flux, xsec, eff input files
- dependence between $E_{\rm true}$ and $E_{\rm recon.}$
- modes with channels
- the energy range
- oscillation parameters
- detector parameters

MODES :

Signa FhcRh AppDi CH: bkg_

It is a unified shell in GNA that gets a config. file and is able to calculate:

- event rates N in channels and modes
- χ^2 values based on the calculated N and data
- single sensitivities of a given experiment model
- joint sensitivities of a given set of models

and etc.

$$N_{j}^{j} = \sum_{i=0}^{D} N_{j,m}^{i}, N_{j}^{i} = K \cdot f(E_{true})_{j} \cdot P(E_{true})(\nu_{\alpha} \rightarrow \nu_{\beta})_{j}.$$
ODES:
fhc_app_nue:
signal: nue
FhcRhc: fhc
AppDis: app
CH:
bkg_beam:
- channel_type: beam
initial_flavor: nue
xsec_type: CC

$$= 2\sum_{m=1}^{M} \sum_{j=1}^{n} (N_{j,m}^{mod.} \ln N_{j,m}^{data} - N_{j,m}^{data} - N_{j,m}^{mod.} \ln N_{j,m}^{mod.}) + \frac{(x - \mu)^{2}}{\sigma^{2}} =$$

▶ < ∃ ▶</p>

Predicted DUNE FD event rates produced within GNA

- FHC (forward horn current) / RHC (reverse horn current) with equal running time
- 7 years according to the staged plan:

plan	kt	MW
1 year	20	1.2
2 years	30	1.2
3 years	30	1.2
4 years	30	1.2
6 years	40	2.4
10 years	40	2.4

- 4 modes:
- $\nu_e/\bar{\nu}_e$ appearance
- $u_{\mu}/ar{
 u}_{\mu}$ disappearance
- MC data from: TDR DUNE

(4回) (4 回) (4 回)

Predicted NOvA FD event rates produced within GNA

Anna Stepanova

Single neutrino mass ordering sensitivities

Anna Stepanova

Joint fit of long-baseline accelerator neutrino experiments in GNA

Single δ_{CP} sensitivities

Predicted T2K FD event rates produced within GNA

- the total exposure is 6.57×10^{20} POT
- ν_e appearance mode in FHC
- ν_{μ} disappearance mode in FHC

Due to the lack of open T2K RHC inputs the sensitivities were produced:

only to the neutrino mass ordering

Joint neutrino mass ordering and δ_{CP} sensitivities

- Single sensitivities are also shown.
- the total NOvA exposure for all plots
- 2 / 7 years according to the DUNE plan
- T2K events are into the neutrino mass ordering sensitivities

We are looking forward to the DUNE start and its measurements into the 3 flavor neutrino paradigm of the Standard model of elementary particles.

Thank you for your attention!

Supported by the Russian Science Foundation under grant agreement no. 22-22-00389.

Anna Stepanova

Joint fit of long-baseline accelerator neutrino experiments in GNA

12 / 12

▶ < ∃ >