Study of the Higgs boson production with a single top quark in ATLAS experiment

IGOR BOYKO, NAZIM HUSEYNOV, OKSANA KOVAL, <u>ANASTASIA TROPINA</u>, IVAN YELETSKIKH

The XXVI International Scientific Conference of Young Scientists and Specialists (AYSS-2022) 25th of October 2022

$pp \rightarrow tH$ theory

- Top Yukawa coupling is directly measured in ttH events
- However, **ttH** is only sensitive to square (i.e. absolute value) of y_t
- **tH** sensitive to magnitude and sign of Higgs-top-Yukawa coupling, y_t (or, more generally the phase between ttH & WWH)
- Gives us a chance to direct probe of the sign of y_t

=> σ(tHq)SM~74fb on 13TeV

If $y_t = -1$ (Inverted Top Coupling) then interference is constructive

=> σ(tHq)BSM~13×σ(tHq)SM

[2] Higgs Physics, C. Grojean [arXiv:1708.00794]

Preselection region

Topology-motivated requirements:

- Ntight lep = 1 (PLIV-Tight isolation)
- Nbjets ≥ 3
- \circ ET miss > 25 GeV

Other requirements:

- $N\tau = 0$ orthogonality with tau channels
- (Njets ≥ 5 && Nbjets ≥ 4) orthogonality condition with ttH(bb)

Events Yields

The tH(bb) deals with the range of backgrounds, the most important are:

 $\circ t\bar{t} + jets$

- SingleTop
- non-prompt
- $\circ W + jets$

In total on preselection level:

- Signal events 72.6
- Total background events 227650

	PR				
tH	72.6	± 1.3			
tWH	35.7	± 0.5			
$t\bar{t} + \ge 1b$	61 61 0	± 90			
$t\bar{t} + \ge 1c$	34240	± 70			
$t\bar{t} + light$	108 920	± 120			
ttH	1733.6	± 1.5			
$t\bar{t} + Z$	923	± 6			
$t\bar{t} + W$	276.6	± 1.5			
tZq	169.8	± 1.3			
tWZ	2.18	± 0.22			
Wt channel	6017	± 29			
t channel	3177	± 14			
s channel	257.1	± 2.8			
W + jets	4023	± 34			
Z + jets	674	± 13			
VV	289	± 6			
other Higgs	26	± 4			
Rare top	100.43	± 0.29			
Non-prompt	5090	± 70			
Total	227 650	± 190			
Data	244 167				

	a few s	lides!
	(SR)	1
tH	49 ± 7	1
tWH	8.6 ± 0.6	
$t\bar{t} + \ge 1b$	11500 ± 2400	
$t\bar{t} + \ge 1c$	6100 ± 3500	89%
$t\bar{t} + light$	23000 ± 4000	
tīH	280 ± 40	
$t\bar{t} + Z$	100 ± 40	
$t\bar{t} + W$	27 ± 8	
tZq	93 ± 9	
tWZ	0.22 ± 0.16	
Wt channel	1000 ± 400	1 5%
t channel	1160 ± 310	4.97
s channel	60 ± 40	
W + jets	790 ± 330	
Z + jets	160 ± 60	
VV	60 ± 31	
other Higgs	5 ± 6	
Rare top	2.71 ± 0.04	
Non-prompt	1300 ± 600	3%
Total	46000 ± 6000	
Data	49 033	1

Will define clearly in

The Multiclass BDT

5 hypotheses:

- Signal (1L tH(bb) only)
- $t\bar{t}$ +≥ 1b, $t\bar{t}$ +≥ 1c, $t\bar{t}$ +≥ 0 lights
- Others (all remaining backgrounds)
 ROC curves are derived:
- Best performing tH
- Least performing $t\bar{t}$ +≥ 1c
- Expected topological similarity to dominant $t\bar{t} \ge 0$ lights BDT trained with 26 variables with early stopping criteria (up to 4k epochs)
- *Five BDT scores are returned for each event (1 per hypothesis)*

Neural-network is used to cross-check BDT performance

ATLAS Work-in-Progress

BDT variables

- *n_j* (CBT binX): number of jets that fall into pseudo-continuous b-tagging (PCBT) bin number X
- "chi2-min" variables: from reconstruction $t\bar{t} + jets$ events using χ^2 -minimization
- n-tophad-jets-CBTX: jets from hadronic top-quark decay which fall in PCBT bin X
- n-tophad-jets-CBTX: jets NOT from hadronic top-quark decay which fall in PCBT bin X, NLO + leptonic top-quark decay jets
- Sphericity: a measure of summed p²_t of all jet energy clusters with respect to jet axis; back-to-back sub-jets: S=0, isotopic subjets: S=1

ATLAS Work-in-Progress

Implementation of new sensitive variables

In tHbq signal we expect a very forward "tagging jet" from "spectator quark":

- It should have large rapidity gap with the rest of the event
- For ttbar background there is no reason to have this forward jet
- Until now, the "tagging jet" was the jet with |*Eta*|>2

(if several, highest Pt was taken)

However, ttbar events have many additional non-b jet

=> There is high probability that one of them will be in the forward with |Eta|>2

Implementation of new sensitive variables

New algorithm for finding "tagging jet" was suggested:

- Was found b-jet in the event related to top quark decay
- For all non-b jets in the event was found invariant mass with b-jet from top quark
- Non b-jet with maximum value of invariant mass with b-jet from top quark, was considered to be the "tagging jet"

Variables constructed:

- Invariant mass of tagging jet and b from top decay
- Tagging *jet's eta*
- *Rapidity gap between* tagging *jet and b from top decay*

Distributions of implemented variables (SM)

 $\times 100$

Distributions of implemented variables (ITC, $y_t = -1$)

 $\chi^2/ndf = 537.8 / 15 \chi^2 prob = 0.00$

2 3

4 5 6

fwdjets eta

2000

0.9

0.8^E

0

1

Data / Pred.

Top row– distributions of new variables ; Bottom row – distributions of old variables;

Separation power is defined as: $Sep = \frac{1}{2} \left(\sum_{i=1}^{nbins} \frac{(s_i - b_i)^2}{s_i + b_i} \right) \times 100$

Cut&Count analysis

SM tH: significance=0.224 (BDT result: 0.227)

95% C. L. s. upper limit							
-20	-σ	+2σ					
5.00	6.71	9.32	12.96	17.38			
ITC tH: significance=3.633							
95% C. L. s. upper limit							
	95	% C. L. S. upper I					
-2σ	-σ	exp. median	+σ	+2σ			
-2σ 0.31	-σ 0.42	exp. median 0.59	+σ 0.82	+2σ 1.10			

Results presented without systematic uncertainty

Fit on the BDT scores distributions

ATLAS Work-in-Progress

Pre-Fit results The BDT scores distribution

Expected mis-modeling in HF backgrounds Good Data/MC ratio for all other distributions ATLAS Work-in-Progress

Good Post-fit agreement in fitted regions

- $\circ~$ Mostly $t\bar{t}$ modeling systematics are high-ranked
 - Large statistics and big fluctuations
- $\circ~$ The MC Statistics in the last bin of SR also high-ranked
 - Last bin is where tH purity is highest low background stats expected
- $\circ~$ Upper limit at 95% CL stands at μ = 12.4
 - Uncertainty on $\mu \sim \pm 6$

Complete Fit

95% C.L.s upper limit

Expected	-2σ	-Ισ	μен	+lσ	+2σ
SM (y _t =+1)	2.56	3.44	4.77	6.74	9.26

 Combination of all channels allows to discover ITC signal after unblinding
 SM signal requires Run 3 data to observe

Alternative Monte Carlo samples & analysis

• Alternative Monte Carlo samples were produced at generator level:

Process	tH (SM)	tH (ITC)	tt	ttbb	ttH	ttZ	tZ
Cross-section, fb	10.8	97	306 000	3600	72	23	18
Number of events	20 000	20000	410 000	40000	37000	37000	20000

• Cut and Count analysis was applied to these samples:

Criteria	tH (SM)	tH (ITC)	tt	ttbb	ttH	ttZ	tZbq
$p_T^{ m lead}$, $p_T^{ m sublead}$	55.8%	53.1%	49.8%	46.2%	45.0%	44.7%	53.5%
$p_T^{ m miss}$	49.4%	47.1%	44.4%	41.3%	40.6%	40.5%	47.9%
N_b	29.9%	28.9%	2.7%	10.9%	28.1%	27.5%	25.6%
$p_T^{ m fwd}$	19.9%	19.1%	0.9%	4.7%	11.4%	11.6%	17.3%
$ \Delta \eta $	16.3%	12.6%	0.5%	2.9%	6.8%	6.4%	11.2%
M_H, m_t	10.9%	8.0%	0.4%	0.9%	2.0%	1.8%	7.2%
Number of events	77	1519	59 0 00	4400	206	58	182

SM tH: significance=0.30

ITC tH: significance=6.0

Conclusions

- Fast generator-level analysis of tH channel was developed
- Results were applied to analysis of ATLAS experimental data
- C&C analysis was completed on private samples
- BDT analysis was completed (Roma group)
- Cross-check NN analysis performed
- New variables implemented for BDT
- C&C analysis was completed
- Preliminary Fit result produced (Manchester group)
- ITC signal can be observed with existing ATLAS data, SM signal can only be observed with Run 3 data

Thanks for your attention.