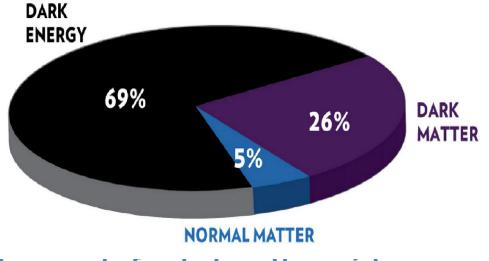


Search for dark matter produced in association with a leptonically decaying Z boson with the CMS Experiment at the LHC


M. Savina, S. Shmatov, <u>K. Slizhevskiy</u> LHEP, JINR/Dubna University

XXVI International Conference of Young Scientists and Specialists (AYSS-2022) JINR, Dubna, 24-28 October, 2022

Introduction: Dark Matter

Arguments for dark matter existence

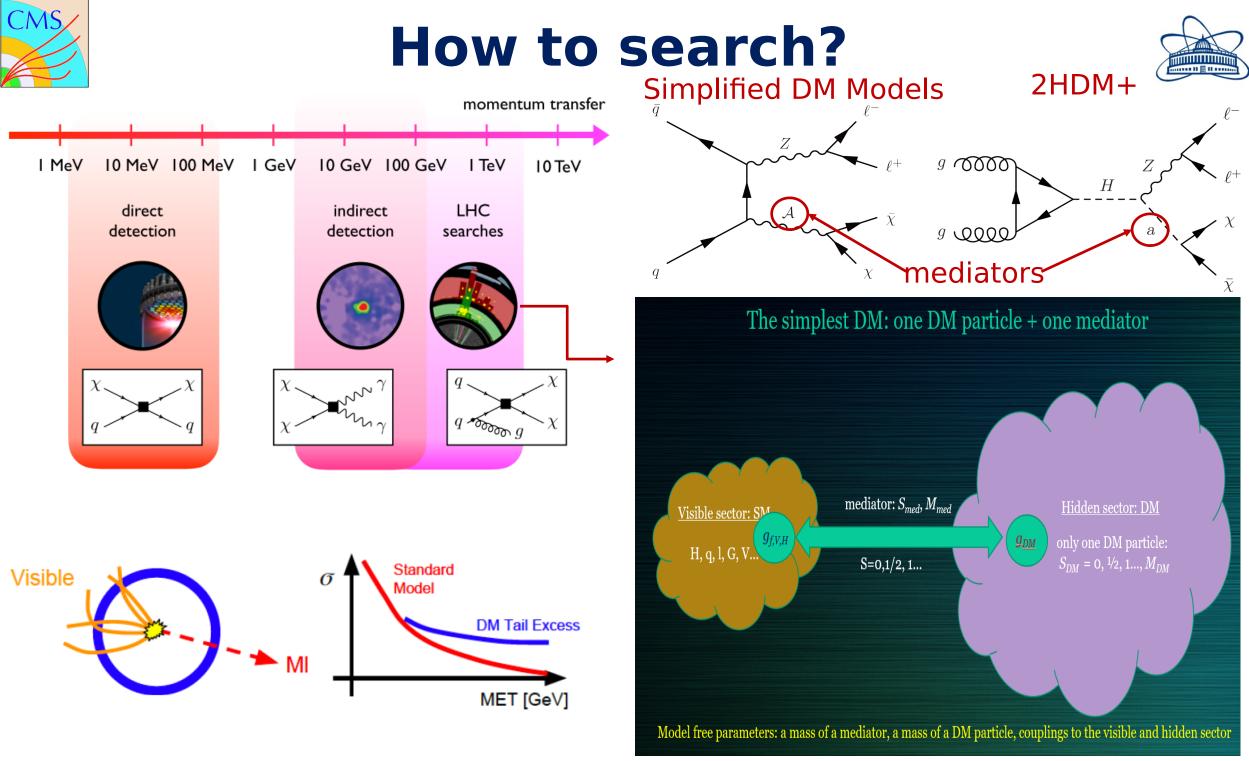
Astrophysical

- Curved rotation of galaxies, virial theorem "violation", ultra diffuse galaxies and satellites of galaxies, spiral structures of galaxies
- Gravitational lensing, evaluation of potentials and masses of galaxies/clusters of galaxies ("Bullet" cluster etc.)

Cosmological

- Anisotropy of cosmic microwave background, flatness of the Universe, the prevalence of the elements and necessity of DM.
- □ Forming of the early Universe structure, the growth of the initial inhomogeneities

Dark Mater with Z and MET at the LHC


Dark matter (DM) is

- Not interacting (very weakly interacting) with ordinary matter
- Electrically neutral
- Stable in terms of cosmological time (14 bill. years)
 Initiated in the early stage of the Universe (till the change of the regimes, from radiation-dominant epoch to epoch of matter domination)

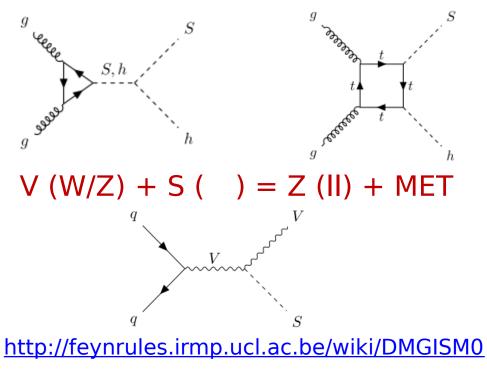
That's all we know.

DM candidates

- Baryonic matter (massive astrophysical compact halo objects -MACHO)
- Non-baryonic matter (sterile neutrinos, weakly interacting massive particles – WIMPs, axions, supersymmetric particles, etc.)

Dark Mater with Z and MET at the LHC

2HDM+a/S Models

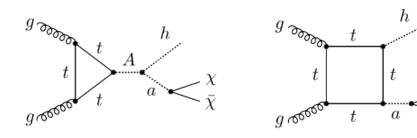

The two-Higgs-doublet model (2HDM) is a way to extend Higgs sector

- neutral CP-even scalars h, H
- neutral CP-odd pseudoscalar A
- charged H⁺, H⁻

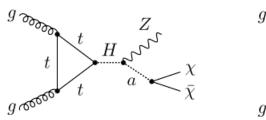
2HDM+s <u>arXiv:1612.03475</u>

2HDM + S (neutral scalar singlet)

h(bbar) + S() = bbar + MET


Dark Mater with Z and MET at the LHC

Dark Matter Sector can be probed by Extra Scalar/Pseudocalar Mediator


2HDM+a arXiv:1701.07427

2HDM + a (light neutral pseudoscalar singlet)

h (bbar) + a () = bbar + MET

Z + a () = Z (II) + MET

<u>https://github.com/LHC-DMWG/model-repo</u> <u>sitory/tree/master/models/Pseudoscalar_2H</u> DM

Model Parameters and Signal Simulation

Generator: MadGraph5MC@NLO.2.9.2

Models: 2HDM+s or 2HDM+a + NNPDF 3.1 NNLO

Process: $p p > Z \chi \chi$ (16 diagrams)

Free parameters for 2HDM + a:

- masses of heavy higgses, $m_{H+/-} = m_{H} = m_{A} = [600:2000] \text{ GeV}$
- mass of dark matter particle, $m\chi = [1:2000]$ GeV
- mass of light pseudoscalar/scalar states, m_a= m_s=[300:1000] GeV
- the ratio of the vacuum expectation values of the two Higgs doublets, $tan(\beta) = [0.5:50]$
- the mixing angle of the two CP-odd weak spin-0 eigenstates (a/A), $sin(\Theta) = [0.15:0.7]$
- the mixing angle between the two CP-even weak spin-0 eigenstates (h/H), , $sin(\Theta) = 1$

Free parameters for 2HDM + S:

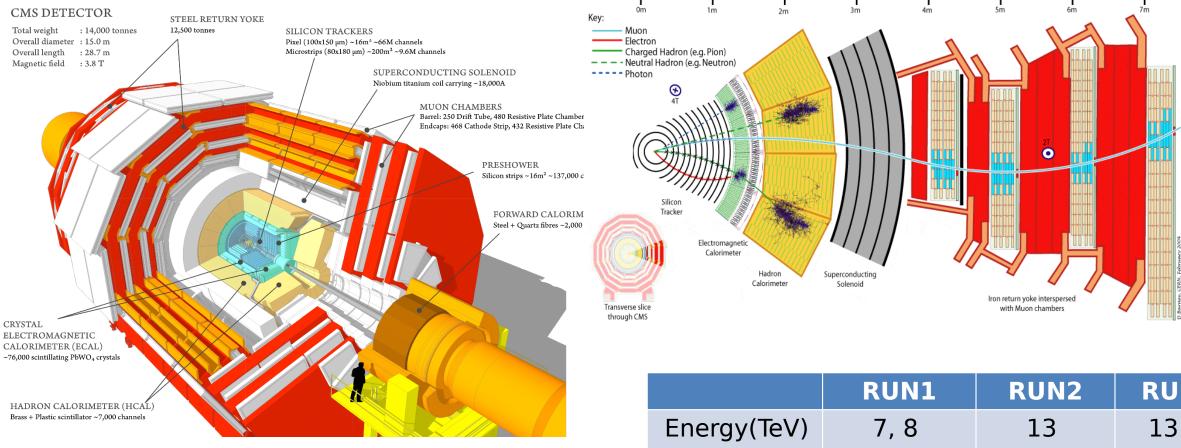
 $H = \cos\theta S_1 - \sin\theta S_2,$

 $S = v_S + \sin\theta S_1 + \cos\theta S_2.$

Yukawa couplings

Couplings of DM and mediators (a/S)

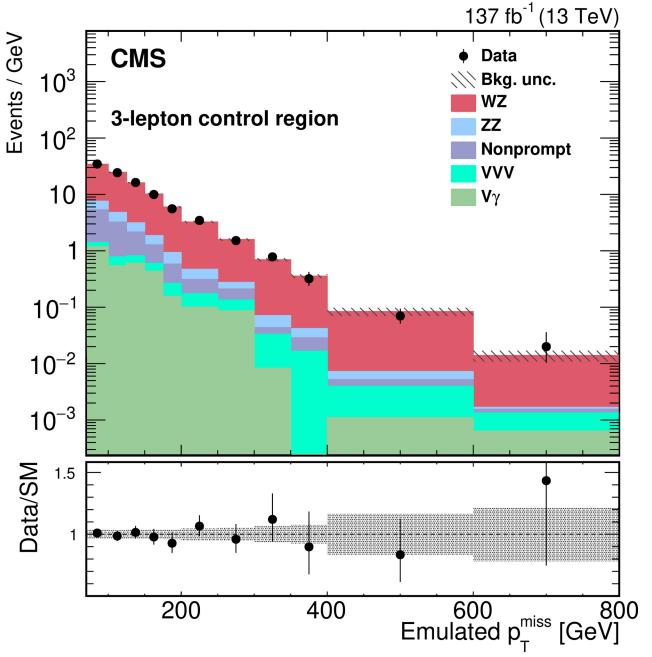
PODODODO SOF


goooooon.

 Mass and widths of the w\new statesInteraction constants between two Higgs doublets (different for 2HDM+s and 2HDM+s)

Experiment CMS at LHC

- Length 22 m
- Diameter 15 метров
- Magnetic field 3.8 T
- Weight 14 000 t!


	RUN1	RUN2	RUN3
Energy(TeV)	7, 8	13	13.6
Integrated luminosity (fb ⁻¹)	4.5, 19.7	163.2	300
Year	2009-2014	2015- 2018	2022- 2027

Background

25.10.2022

Main background sources:

WZ → I nu I I

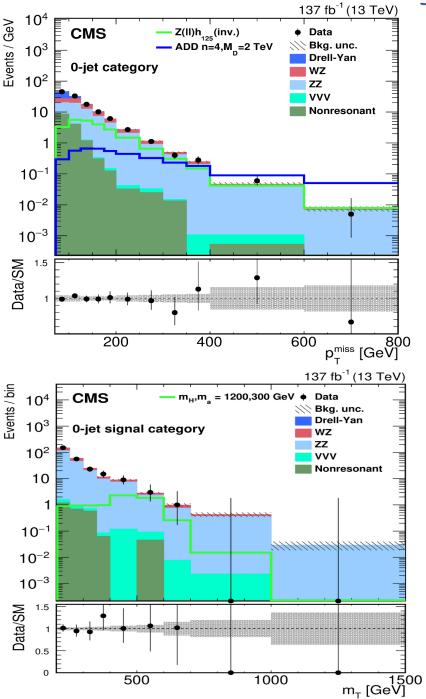
 $ZZ \rightarrow 4I$

DY: This process does not produce undetectable particles.

VVV: (WWZ, WZZ, and ZZZ) ttW \rightarrow WWbbW, ttZ \rightarrow WWbbZ, and tty \rightarrow WWbby

CMS RUN2 Results

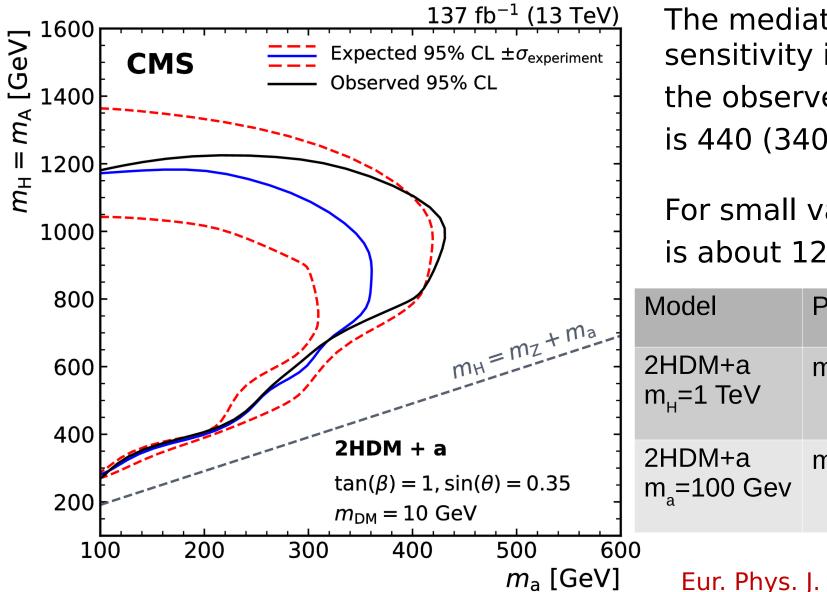
Observed number of events and post-fit background estimates


Process	0-jet category	1-jet category
Drell-Yan	502 ± 94	1179 ± 64
WZ	1479 ± 53	389 ± 16
ZZ	670 ± 27	282 ± 13
Nonresonant background	384 ± 31	263 ± 22
Other background	6.3 ± 0.7	6.8 ± 0.8
Total background	3040 ± 110	2120 ± 76
Data	3053	2142

Expected yields and the product of acceptance and efficiency for several models probed in the analysis

Yields	Product of acceptance
	and efficiency (%)
864 ± 64	10.6 ± 0.8
35.1 ± 2.4	18.6 ± 1.3
221 ± 16	8.2 ± 0.6
14.1 ± 4.0	12.7 ± 2.7
64.8 ± 6.1	17.6 ± 1.7
	$864 \pm 64 \\ 35.1 \pm 2.4 \\ 221 \pm 16 \\ 14.1 \pm 4.0$

Eur. Phys. J. C 81 (2021) 13



CMS RUN2 Exclusion Plot for 2HDM+a

The mediator mass with the most sensitivity is $m_{\mu} = 1000$ GeV, where the observed (expected) limit on m_a is 440 (340) GeV.

For small values of $m_{_{\rm H}}$ the limit on $m_{_{\rm H}}$ is about 1200 GeV.

t ma	Model	Parameter	Observed	Expected
$m_{H} = m_{Z} + m_{a}$	2HDM+a m _H =1 TeV	m _a	330 GeV	440 GeV
2HDM + a $tan(\beta) = 1, sin(\theta) = 0.35$ $m_{DM} = 10 \text{ GeV}$	2HDM+a m _a =100 Gev	m _H	1200 GeV	1200 GeV
300 400 500 600 <i>m</i> _a [GeV] Eur. Phys. J. C 81 (2021) 13				

RUN3 Expectations (cross sections)

2HDM+S 2HDM+a 10 Cross section (pb) Cross section (pb) n s1 = 400 s1 = 600s1 = 700m s1 = 10010 10^{-3} $\tan(\beta) = 1$, $sin(\Theta) = 0.35$, $M\chi = 10 \text{ GeV}$ √s = 13.6 TeV 10 10-4 2000 600 1000 1200 1600 1400 1800 200 400 600 800 1000 m H. GeV m a, GeV

The total cross section of the process pp $\rightarrow Z \chi \bar{\chi}$ in 2HDM+a model(right) and 2HDM+s (left). The observed limits on the production cross sections are used to constrain parameters of these models.

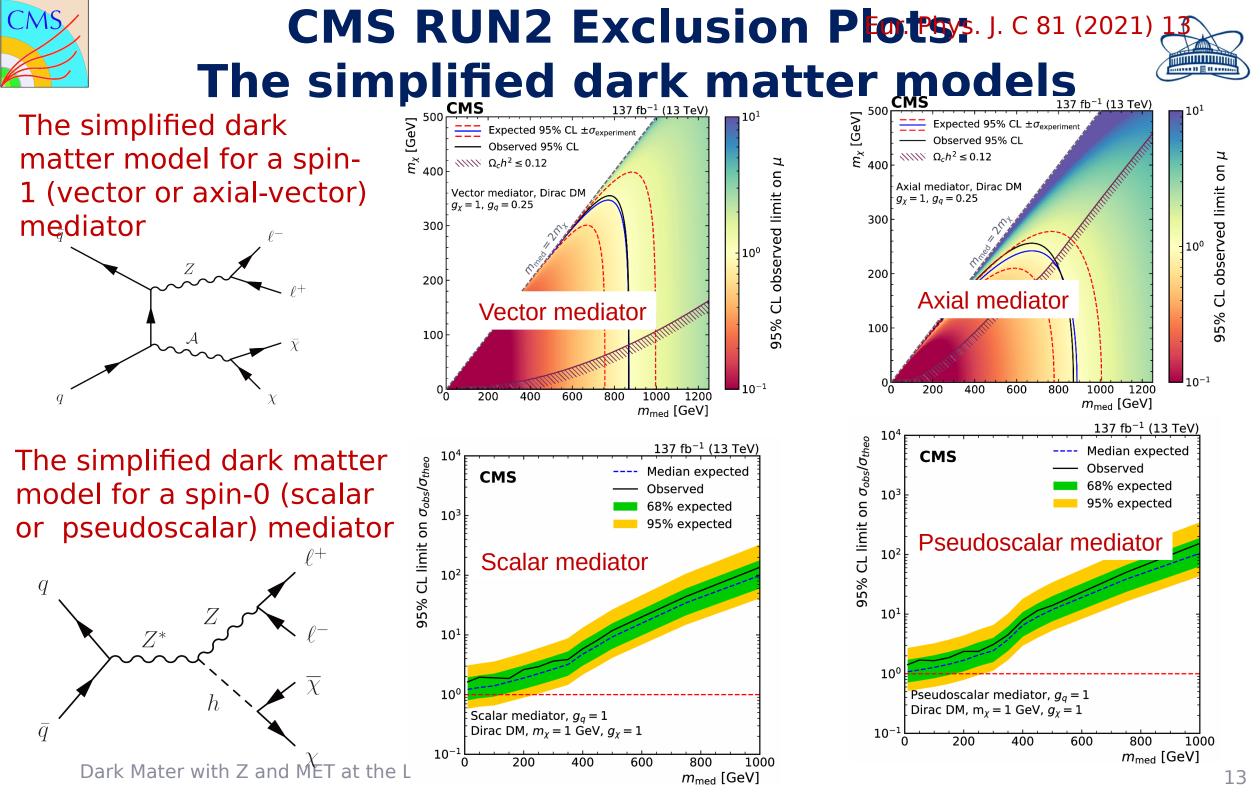
In total about 1000 sets of model parameters

SUMMARY

- A search for dark matter particles can be performed using events with a Z boson and large missing transverse momentum
- Recent search has been performed with proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2016-2018, corresponding to an integrated luminosity of 137 fb⁻¹
 - no evidence of physics beyond the standard model is observed
 - limits are set on dark matter particle production in the context of a two-Higgs-doublet model with an additional pseudoscalar mediator.
 - in addition, limits are provided for spin-dependent and spin-independent scattering cross sections and are compared to those from direct-detection experiment
- For the preparation of LHC RUN3 data analysis, the cross sections of dark matter production in association with a leptonically decaying Z boson have been calculated for
 - 2HDM + a model (additional pseudoscalar mediator)
 - 2HDM + S model (additional scalar mediator)

These processes were simulated for about 1000 sets of model parameters

The next steps are full simulation (right now) and RUN3 data analysis (waiting for data of 2023)

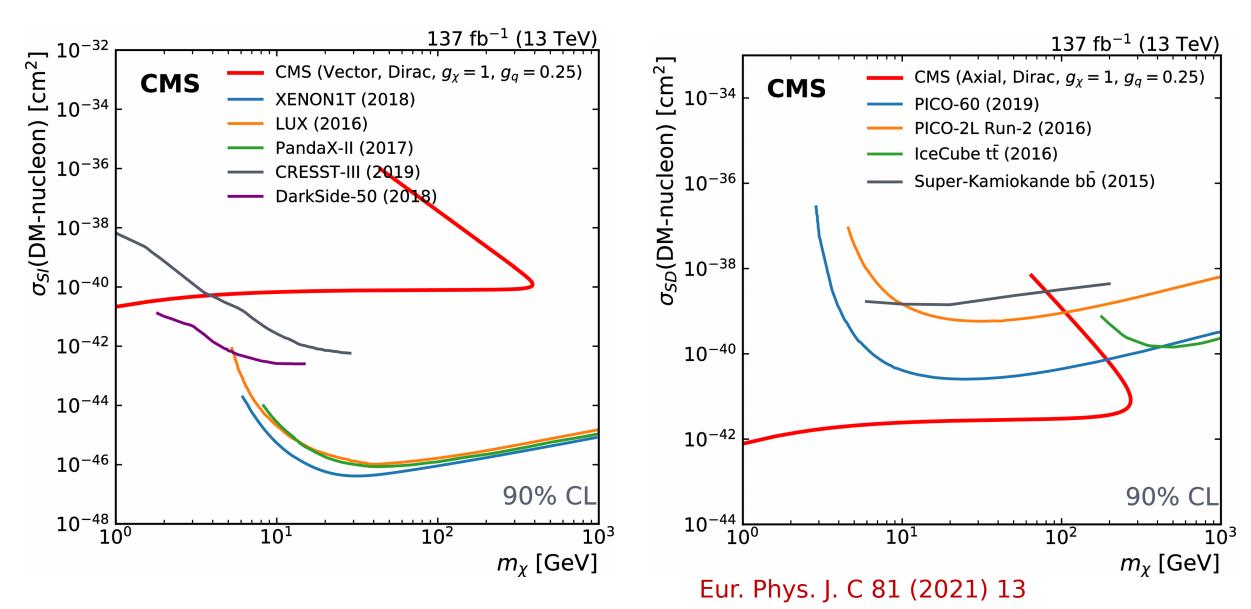


THANK YOU FOR YOUR ATTENTION!

Dark Mater with Z and MET at the LHC

25.10.2022

12



DM-nucleon upper limits on the cross section for simplified DM

The spin-independent case with vector couplings

The spin-dependent case with axial-vector couplings

Summary of the kinematic selections for the signal region

Quantity	Requirement	Target backgrounds
N_{ℓ}	=2 with additional lepton veto	WZ, VVV
p_{T}^ℓ	>25/20 GeV for leading/subleading	Multijet
Dilepton mass	$\left m_{\ell\ell}-m_{Z} ight <15{ m GeV}$	WW, top quark
Number of jets	≤ 1 jet with $p_{\rm T}^{\rm j} > 30 {\rm GeV}$	DY, top quark, VVV
$p_{\mathrm{T}}^{\ell\ell}$	>60 GeV	DY
b tagging veto	0 b-tagged jet with $p_{\rm T} > 30 {\rm GeV}$	Top quark, VVV
au lepton veto	$0 \tau_{\rm h}$ cand. with $p_{\rm T}^{\tau} > 18 {\rm GeV}$	WZ
$\Delta \phi(\vec{p}_{\rm T}^{\rm j},\vec{p}_{\rm T}^{ m miss})$	>0.5 radians	DY, WZ
$\Delta \phi(\vec{p}_{\rm T}^{\ell\ell},\vec{p}_{\rm T}^{{ m miss}})$	>2.6 radians	DY
$ p_{\mathrm{T}}^{\mathrm{miss}} - p_{\mathrm{T}}^{\ell\ell} / p_{\mathrm{T}}^{\ell\ell}$	< 0.4	DY
$\Delta R_{\ell\ell}$	<1.8	WW, top quark
$p_{\rm T}^{\rm miss}$ (all but 2HDM+a)	>100 GeV	DY, WW, top quark
$p_{\rm T}^{\rm miss}$ (2HDM+a only)	>80 GeV	DY, WW, top quark
$m_{\rm T}$ (2HDM+a only)	>200 GeV	DY, WW, ZZ, top quark