Worldsheet of a continuous helicity particle

Ivan A. Retuntsev (speaker),
Dmitry S. Kaparulin, Simon L. Lyakhovich

Tomsk State University
Faculty of Physics, Quantum Field Theory Department

The XXVI International Scientific Conference of Young Scientists and Specialists (AYSS-2022)

October 24-28, 2022

Work

Link 1

D.S. Kaparulin, S.L. Lyakhovich, and I. A. Retuntsev, Worldsheet of a continuous helicity particle, Phys. Rev. D 105, 065004 (2022).

Supported by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS and the Tomsk State University Development Programme (Priority-2030).

Research object

Classical irreducible spinning particle with continuous helicity in $\mathrm{d}=3$ Minkowski space. Here,

- spinning particle - a particle with internal degrees of freedom,
- irreducibility and continuous helicity - quantization of the classical model corresponds to the irreducible continuous helicity representation of the Poincare group.

World sheet concept

The work

Link 2

S.L. Lyakhovich and D.S. Kaparulin, World sheets of spinning particles, Phys. Rev. D 96, 105014 (2017).
tells that irrespectively of the model for any classical irreducible spinning particle in Minkowski space

- particle position x belongs to some surface - worldsheet,
- the worldsheet position is defined by momentum and total angular momentum of the particle,
- all particle trajectories are connected by gauge transformation.

World sheet concept

The work

S.L. Lyakhovich and D.S. Kaparulin, World sheets of spinning particles, Phys. Rev. D 96, 105014 (2017).
also

- gives a method to find geometrical equation of motion,
- considers the massive three-dimensional case in detail.

Notations and conventions

We consider three-dimensional Minkowski space with local coordinates $x^{\mu}, \mu=0,1,2$ with the following metric:

$$
\begin{equation*}
\eta_{\mu \nu}=\operatorname{diag}(-1,+1,+1) \tag{1}
\end{equation*}
$$

Scalar, vector and scalar triple products are

$$
\begin{gather*}
(x, y)=\eta_{\mu \nu} x^{\mu} y^{\mu}, \quad x^{2}=(x, x) \tag{2}\\
{[x, y]^{\mu}=\varepsilon^{\mu \nu \rho} x_{\nu} y_{\rho}, \quad(x, y, z)=(x,[y, z])}
\end{gather*}
$$

where $\varepsilon^{\mu \nu \rho}$ is levi-Civita symbol with property $\varepsilon^{012}=-1$.

Worldsheet of a continuous helicity particle

For classical irreducible spinning particle with continuous helicity, its momentum p and total angular momentum J are subjected to conditions

$$
\begin{equation*}
p^{2}=0, \quad(p, J)-\sigma=0, \tag{3}
\end{equation*}
$$

where $\sigma \neq 0$ is helicity. Position of the particle belongs to the worldsheet given by equation

$$
\begin{equation*}
(J-[x, p])^{2}-\varrho=0 \tag{4}
\end{equation*}
$$

where ϱ is parameter of the model.

Worldsheet of a continuous helicity particle

After introducing new parameters

$$
\begin{equation*}
v=[J, p], \quad \Delta=J^{2}-\varrho \tag{5}
\end{equation*}
$$

the equation of worldsheet takes the following form:

$$
\begin{equation*}
(p, x)^{2}+2(v, x)+a=0, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
p^{2}=0, \quad v^{2}=\sigma^{2}, \quad(p, v)=0 \tag{7}
\end{equation*}
$$

The worldsheet is parabolic cylinder with lightlike axis:

- p determines the direction of symmetry axis,
- v determines the direction of asymptotes of parabola, being orthogonal section of cylender,
- Δ determines the distance between the vertex of parabolic cylinder and origin,
- σ determines the focal distance of parabolic cylinder.

Worldsheet of a continuous helicity particle

Worldsheet of continuous helicity spinning particle with $p=(1,0,1)$, $J=(0,0,1), \varrho=1$. The step equals 1 .

Worldsheet of a continuous helicity particle

Since we can express

$$
\begin{equation*}
J=\frac{\Delta+\varrho}{2 \sigma} p+\sigma e \tag{8}
\end{equation*}
$$

where e is determined by equations

$$
\begin{equation*}
e^{2}=(e, v)=(e, p)-1=0 \tag{9}
\end{equation*}
$$

we have one to one correspondence between set of particle state p, J and set of worldsheets p, v, a.

Equations of motion

- The world sheet is the only restriction for irreducible particle position.
therefore
- Trajectory of irreducible spinning particle is general curve on its worldsheet.
- All curves on worldsheet are connected by gauge transformations.

Equations of motion

We have the known differential geometric problem:

- The surface is given.
- The task is to find the equations of motion describing the general curves lying on this surface.

To find a solution $x(\tau)$, we supplement the system with differential consequences of the worldsheet equation. As the result we have the following system $(k=0,1,2,3,4)$:

$$
\begin{gather*}
\frac{d^{k}}{d \tau^{k}}\left((p, x(\tau))^{2}+2(v, x(\tau))+\Delta\right)=0 \tag{10}\\
p^{2}=0, \quad v^{2}=\sigma^{2}, \quad(p, v)=0
\end{gather*}
$$

Equations of motion

As the solution of

$$
\begin{gather*}
\frac{d^{k}}{d \tau^{k}}\left((p, x(\tau))^{2}+2(v, x(\tau))+\Delta\right)=0 \tag{11}\\
p^{2}=0, \quad v^{2}=\sigma^{2}, \quad(p, v)=0
\end{gather*}
$$

where $k=0,1,2,3,4$, we have

- integrals of motion p, J (or equivalently p, v, a) in terms of characteristics of trajectory $x, \dot{x}, \ddot{x}, \dddot{x}, \dddot{x}$,
- equation of motion for general curve on worldsheet.

$$
\begin{equation*}
F(x, \dot{x}, \ddot{x}, \dddot{x}, \dddot{x})=0 \tag{12}
\end{equation*}
$$

Equations of motion

We consider two types of trajectories:

- timelike curves on the worldsheet, for physical reason,

$$
\begin{equation*}
(\dot{x}, \dot{x})<0 \tag{13}
\end{equation*}
$$

- lightlike curves on the worldsheet, to simplify calculation,

$$
\begin{equation*}
(\dot{x}, \dot{x})=0 \tag{14}
\end{equation*}
$$

We also exclude straight lines from consideration because they don't define their world sheet in a unique way.

Timelike curves on worldsheet

In timelike case

$$
\begin{equation*}
(\dot{x}, \dot{x})<0 \tag{15}
\end{equation*}
$$

equation of motion and integrals of motion have the following form:

$$
\begin{align*}
& 81 F^{2} G^{2} H-18 F G^{2} H^{2}-15 C^{4} F^{2} H+18 C^{2} F^{3} H-C^{2} F^{2} H^{2}+486 C F G^{3}- \\
& -324 C G^{3} H+270 C^{5} F G-162 C^{3} F^{2} G+1458 C^{2} F G^{2}+18 C^{3} G H+ \\
& +189 C^{2} G^{2} H+4 C^{4} F H-1134 C^{3} F G+15 C^{2} G^{2} H^{2}+2 C^{3} G H^{2}+30 C^{5} G H- \\
& -486 C F^{3} G+G^{2} H^{3}-120 C^{3} F G H+90 C^{2} F G^{2} H-6 C F G H^{2}+108 C F^{2} G H- \\
& -216 C^{3} G+972 C^{2} G^{2}-36 C^{4} F+504 C^{5} G+540 C^{4} G^{2}-216 C^{4} F^{2}+ \\
& +36 C^{6} F+540 C^{3} G^{3}-81 C^{2} F^{4}-90 C^{4} F^{3}-1458 C G^{3}+ \\
& +C^{6} H-7 C^{6}+729 G^{4}+15 C^{8}=0 . \tag{16}
\end{align*}
$$

Timelike curves on worldsheet

$$
\begin{align*}
& p=\sqrt{-\operatorname{sign}(\sigma) \sigma \varkappa_{1} \alpha}\left(\dot{x}-\frac{B \alpha}{\varkappa_{1}(3 \alpha-C)} \ddot{x}+\frac{\alpha}{\varkappa_{1}}[\dot{x}, \ddot{x}]\right), \\
& J=\left[\frac{(x, p)^{2} \varkappa_{1} \alpha-\sigma}{2 \sqrt{-\operatorname{sign}(\sigma) \varkappa_{1} \alpha}}+\frac{\Delta+\varrho}{2} \sqrt{-\frac{\alpha \varkappa_{1}}{\sigma}}\right] \dot{x} \\
& +\frac{\alpha}{\varkappa_{1}}\left[\left((x, p)+\frac{B}{C-3 \alpha} \frac{(x, p)^{2} \varkappa_{1} \alpha+\sigma}{2 \sqrt{-\operatorname{sign}(\sigma) \sigma \varkappa_{1} \alpha}}\right)+\frac{B}{(C-3 \alpha)} \frac{\Delta+\varrho}{2} \sqrt{-\frac{\alpha \varkappa_{1}}{\sigma}}\right] \ddot{x} \\
& +\frac{\alpha}{\varkappa_{1}}\left[\left(\frac{(x, p)^{2} \varkappa_{1} \alpha+\sigma}{2 \sqrt{-\operatorname{sign}(\sigma) \sigma \varkappa_{1} \alpha}}-\frac{B(x, p)}{C-3 \alpha}\right)+\sqrt{-\frac{\alpha \varkappa_{1}}{\sigma}}\right][\dot{x}, \ddot{x}], \tag{17}
\end{align*}
$$

where

$$
\begin{aligned}
& \Delta=\frac{\sigma \alpha}{\varkappa_{1}}\left[\left((x, \dot{x}) \varkappa_{1}+(x, \dot{x}, \ddot{x}) \alpha+\frac{(x, \ddot{x}) B \alpha}{C-3 \alpha}\right)^{2}+\frac{(x, \dot{x}, \ddot{x}) B}{C-3 \alpha}-2(x, \ddot{x})\right], \\
& \alpha=-\frac{U}{V} .
\end{aligned}
$$

Timelike curves on worldsheet

Here, the following notations are used:

$$
\begin{align*}
& U=225 F C^{2}-6 C G H+15 C^{2} F H-216 G F G-90 C^{3} G+90 C^{2} F^{2} \\
& -75 C^{4}-5 C^{2} H+81 G^{2}-108 C G+36 C^{2}+81 F^{3}+F H^{2}-18 F^{2} H, \\
& V=C^{3} H+G H^{2}-18 F G H+81 F^{2} G-135 C G^{2}-6 C^{3}+15 C^{2} G H \\
& +15 C^{5}-24 C^{3} F+90 F C^{2} G+99 C^{2} G, \tag{19}\\
& F=-\frac{1}{9}\left(4 B^{2}+4 C^{2}-3 E+21\right), \\
& G=\frac{1}{9}(B D-E C+7 C), \\
& H=B^{2}+C^{2}-9,
\end{align*}
$$

Timelike curves on worldsheet

Where $B, C, D E$ are functions of curve invariants: curvature \varkappa_{1} and torsion \varkappa_{2} and their derivative up to second order,

$$
\begin{align*}
B & =\varkappa_{1}^{-2} \dot{\varkappa}_{1}, \quad C=\varkappa_{1}^{-1} \varkappa_{2}, \\
D & =\varkappa_{1}^{-3}\left(2 \dot{\varkappa}_{1} \varkappa_{2}+\varkappa_{1} \dot{\varkappa}_{2}\right), \tag{20}\\
E & =\varkappa_{1}^{-3}\left(\ddot{\varkappa}_{1}+\varkappa_{1}^{3}-\varkappa_{1} \varkappa_{2}^{2}\right) .
\end{align*}
$$

Since \varkappa_{1} and \varkappa_{2} are defined as

$$
\begin{equation*}
\varkappa_{1}=\sqrt{(\ddot{x}, \ddot{x})}, \quad \varkappa_{2}=\frac{(\dot{x}, \ddot{x}, \dddot{x})}{\sqrt{(\ddot{x}, \ddot{x})}}, \tag{21}
\end{equation*}
$$

the equation of motion has derivatives up to 4th order. One also has the following gauge symmetries:

$$
\begin{equation*}
\delta_{\xi} x=\dot{x} \xi, \quad \delta_{\eta} x=p \eta . \tag{22}
\end{equation*}
$$

Timelike curves on worldsheet

Example of timelike trajectory of irreducible continuius helicity spinning particle with $p=(1,0,1), J=(0,0,1), \varrho=1$. The step equals 1 .

Lightlike curves on worldsheet

In lightlike case

$$
\begin{equation*}
(\dot{x}, \dot{x})=0 \tag{23}
\end{equation*}
$$

integrals of motion read

$$
\begin{gather*}
p=\sqrt{\operatorname{sign}(\sigma) \sigma} \dddot{x} \\
J=-\sqrt{\operatorname{sign}(\sigma) \sigma}\left[\dot{x}+(x, \dddot{x}) \ddot{x}-\left((x, \ddot{x})+\frac{\varrho}{2 \sigma}\right) \dddot{x}\right] . \tag{24}
\end{gather*}
$$

Equations of motion have derivatives ut to 3rd order

$$
\begin{equation*}
(\dddot{x}, \dddot{x})=0, \quad(\dot{x}, \dot{x})=0 \tag{25}
\end{equation*}
$$

and one gauge symmetry - reparametrization,

$$
\begin{equation*}
\delta_{\xi} x=\dot{x} \xi \tag{26}
\end{equation*}
$$

Lightlike curves on worldsheet

Solving equations

$$
\begin{equation*}
(\dddot{x}, \dddot{x})=0, \quad(\dot{x}, \dot{x})=0 \tag{27}
\end{equation*}
$$

we get

$$
\begin{align*}
x(\tau)= & \frac{1}{6} \frac{\tau^{3}}{\sqrt{\operatorname{sign}(\sigma) \sigma}} p+\frac{\tau^{2}}{2 \sigma}[p, J]-\tau \sqrt{\operatorname{sign}(\sigma) \sigma} e \\
& +\frac{1}{2 \sigma^{2}}((J, J)-\varrho)[p, J]+\frac{\lambda}{p^{0}} p, \tag{28}
\end{align*}
$$

where λ can't be expressed in terms of p, J, so lightlike curves on parabolic cylinder with lightlike axis can't be considered as worldpaths of continuous helicity spinning particle.

Lightlike curves on worldsheet

Lightlike curves $(\lambda=0$ and $\lambda=2)$ on the parabolic cylinder with $p=(1,0,1)$, $J=(0,0,1), \varrho=1$. The step equals 1 .

Other results

In work

D.S. Kaparulin, S.L. Lyakhovich, and I. A. Retuntsev, Worldsheet of a continuous helicity particle, Phys. Rev. D 105, 065004 (2022).
we also

- check our results by establishing a correspondence with the known anion model,
- give some comments about worldsheet and equations of motion in truly massless case $(\Delta=0)$.

Thanks for your attention!

