BM@:

JOINT INSTITUTE
FOR NUCLEAR RESEARCH

0.11 .41

TOF700 to ZDC track matching on the Ar data at the BM@N experiment

The XXVI International Scientific Conference of Young Scientists and Specialists (AYSS-2022)

K. Alishina,

on behalf of the BM@N collaboration

JINR, Dubna, Russia

NICA project

Baryonic Matter at Nuclotron

Heavy-Ion Collisions

- At \sqrt{s} energies of 2-4.5 GeV, nucleon densities in a collision zone exceed the saturation density by the factor of 3-4.
- Hadrons with strangeness are early produced in the collision and not presented in the initial state of two colliding nuclei.
- Heavy-ion collisions are a rich source of strangeness, and the coalescence of kaons with lambdas or lambdas with nucleons will produce a vast variety of multi-strange hyperons or of light hypernuclei.

Baryonic Matter at Nuclotron

Setup of BM@N for RUN-7 in spring 2018

- $\mathbf{B M @ N}$ is the first experiment with a fixed target at the NICA.
- It is designed to study nuclear-nuclear collisions at high densities.
- The Nuclotron provides heavy ion beams with energies ranging from 2.3 to 4.5 GeV

November 2017
Technical work before the 7th run

GEM+STS ZDC

Real-life view of the detector, Run7

- No beam hole.
- Central part consist of 36 modules with sizes $7.5 \times 7.5 \mathrm{~cm}^{2}$
- Peripheral part contains 68 modules of $15 \times 15 \mathrm{~cm}^{2}$.
- Total number of modules -104

One of the purposes of the ZDC is to select central events at the trigger level during data collection.

PID with TOF700

Using tracks from L.Kovachev

Expected kinetic energy(Tkin vs p/q)

$\mathrm{p} / \mathbf{q}, \mathrm{GeV} / \mathrm{c}$

Total energy of the track particles Etot: Etot $=\sqrt{(p / z \cdot Z i d)^{2}+m^{2} \cdot Z_{i d}^{2}}$
Kinetic energy of the track particles Tkin \quad Tkin $=E t o t-\sqrt{m^{2} Z_{i d}^{2}}$
where Zid is the charge for the track (1 for the "proton"), p / z is the momentum of the track.

Expected kinetic energy(Tkin vs p/q)

$\mathrm{p} / \mathrm{q}, \mathrm{GeV} / \mathrm{c}$

Tkin, GeV
Total energy of the track particles Etot: Etot $=\sqrt{(p / z \cdot Z i d)^{2}+m^{2} \cdot Z_{i d}^{2}}$
Kinetic energy of the track particles Tkin $T k i n=E t o t-\sqrt{m^{2} Z_{i d}^{2}}$
where Zid is the charge for the track (1 for the "deuteron"), p / z is the momentum of the track

XY- extrapolate for the triggered module вм@:

Real position after extrapolation

Expected position on the map

X, cm

X, cm

XY- extrapolate for the triggered module вм@:

Real position after extrapolation

Expected position on the map

$\underset{\sim}{8}$

68	61	54	47	40	36	32	28	21	14	7
67	60	53	46	39	35	31	27	20	13	6
66	59	52	45	$\begin{array}{l\|} 104 \\ \hline 98 \\ 103 \\ \hline \end{array}$		$\begin{array}{l\|l\|} \hline 80 & 74 \\ \hline 79 & 73 \\ \hline \end{array}$	26	19	12	5
65	58	51	44	$\begin{array}{l\|l} 102 & 96 \\ \hline 101 & 95 \end{array}$		$\begin{array}{\|l\|l\|} \hline 78 & 72 \\ \hline 77 & 71 \\ \hline \end{array}$	25	18	11	4
64	57	50	43	$\begin{array}{\|l\|} \hline 100 \\ \hline 94 \\ \hline 99 \end{array}$	$\begin{array}{l\|l} \hline 88 & 82 \\ 87 & 81 \end{array}$	$\begin{array}{\|l\|l\|} \hline 76 & 70 \\ \hline 75 & 69 \\ \hline \end{array}$	24	17	10	3
63	56	49	42	38	34	30	23	16	9	2
62	55	48	41	37	33	29	22	15	8	1

ZDC calibration

Distribution of the RMS cluster width

Distribution of the square width

The ZDC was calibrated in 2015. The beam was irradiated with different modules.
From the Figure ($\mathbf{R}_{\text {clust }}, \mathbf{R}^{2}$ clust $)$ - selection criterion: $\mathbf{R}_{\mathrm{i}}<\mathbf{8 - 9} \mathbf{~ c m}$

ZDC map

Criteria to the distance:
$R_{i}<9 \mathrm{~cm}, \mathrm{k}=\sum_{i=0}^{m} 1 / n$
Total energy release in the circle

$$
\operatorname{Sum} E_{Z D C}=\sum_{i=1}^{104} E_{i} \cdot k_{i}
$$

E_{i} - energy release of the i-th triggered module.

Distance: $R_{i}=\sqrt{(\mathrm{Xextr}-\mathrm{Xi})^{2}+(\mathrm{Yextr}-\mathrm{Yi})^{2}}, \quad\left({ }^{* *}\right)$
Xi - X coordinate of the random point of the i-th triggered module,
Yi - Y coordinate of the random point of the i-th triggered module.

Summary

Done:

\checkmark The match between the particle track and the module in ZDC is established;
\checkmark The optimal criteria for the tracks have been selected;
\checkmark Determination of expected kinetic energy ranges(p,d);
Plan:
Search and study of the correlation between the distributions of energy release ($\mathrm{E}_{\text {zdc }}$) and track energies($\mathrm{T}_{\text {kin }}$ for p, d);
Wait for Run - 8 -

Thank you for attention!

