

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Cn.u

TOF700 to ZDC track matching on the Ar data at the BM@N experiment

The XXVI International Scientific Conference of Young Scientists and Specialists (AYSS-2022) K. Alishina. on behalf of the BM@N collaboration

JINR, Dubna, Russia

NICA project

Heavy-Ion Collisions

• At \sqrt{s} energies of 2 - 4.5 GeV, nucleon densities in a collision zone exceed the saturation density by the factor of 3-4.

• Hadrons with strangeness are early produced in the collision and not presented in the initial state of two colliding nuclei.

• Heavy-ion collisions are a rich source of strangeness, and the coalescence of kaons with lambdas or lambdas with nucleons will produce a vast variety of multi-strange hyperons or of light hypernuclei.

Baryonic Matter at Nuclotron

Setup of BM@N for RUN-7 in spring 2018

- **BM@N** is the first experiment with a fixed target at the NICA.
- It is designed to study nuclear-nuclear collisions at high densities.
- The Nuclotron provides heavy ion beams with energies ranging from 2.3 to 4.5 GeV

November 2017

Technical work before the 7th run

ZDC at BM@N

Real-life view of the detector, Run7

- No beam hole.
- Central part consist of 36 modules with sizes 7.5×7.5 cm²
- Peripheral part contains 68 modules of 15×15 cm².
- Total number of modules -104

One of the purposes of the ZDC is to select <u>central events</u> at the trigger level during data collection.

24.10.2020

PID with TOF700

PID with ToF700

7

Expected kinetic energy(Tkin vs p/q)

Expected kinetic energy(Tkin vs p/q)

Total energy of the track particles Etot: $\text{Etot} = \sqrt{(p/z \cdot Zid)^2 + m^2 \cdot Z_{id}^2}$ Kinetic energy of the track particles Tkin $Tkin = Etot - \sqrt{m^2 Z_{id}^2}$ where Zid is the charge for the track (1 for the "deuteron"), p/z is the momentum of the track

Extrapolation of tracks from TOF700 to ZDC

Extrapolated coordinates from TOF700 to ZDC:

Xextr = Xtof + (Z - Ztof) * TXtof;

Yextr = Ytof + (Z - Ztof) * TYtof;

68	61	54	47	40	36 32		28	21	14	7		
67	60	53	46	39	35	31	27	20	13	6		
66	59	52	45	104 98 103 97	92 86 91 85	80 74 79 73	26	19	12	5		
65	58	51	44	102 96 101 95	90 84 89 83	78 72 77 71	25	18	11	4		
64	57	50	43	100 94 99 93	88 82 87 81	76 70 75 69	24	17	10	3		
63	56	49	42	38	34	30	23	16	9	2		
62	55	48	41	37	33	29	22	15	8	1		
X,cmCriteria for selecting tracks: $ Xextr < 83 \text{ cm},$ $ Yextr < 52 \text{ cm},$ Active Zone ZDC												
p/0	q > 2	2.5 (GeV	for	the	deu	tero	n				

BA

 $1 < p/q \le 5.5$ GeV for the proton

XY– extrapolate for the triggered module BM@N

Expected position on the map

X,cm

cm	68	61	54	47	40	36	32	28	21	14	7
Υ,	67	60	53	46	39	35	31	27	20	13	6
	66	59	52	45	104 98 103 97	92 86 91 85	80 74 79 73	26	19	12	5
	65	58	51	44	102 96 101 95	90 84 89 83	78 72 77 71	25	18	11	4
	64	57	50	43	100 94 99 93	88 82 87 81	76 70 75 69	24	17	10	3
	63	56	49	42	38	34	30	23	16	9	2
	62	55	48	41	37	33	29	22	15	8	1

X,cm

XY– extrapolate for the triggered module BM@N

Y,cm

Real position after extrapolation

Expected position on the map

68	61	54	47	40	36	32	28	21	14	7
67	60	53	46	39	35	31	27	20	13	6
66	59	52	45	104 98 103 97	92 86 91 85	80 74 79 73	26	19	12	5
65	58	51	44	102 96 101 95	90 84 89 83	78 72 77 71	25	18	11	4
64	57	50	43	100 94 99 93	88 82 87 81	76 70 75 69	24	17	10	3
63	56	49	42	38	34	30	23	16	9	2
62	55	48	41	37	33	29	22	15	8	1

X,cm

m	68	61	54	47	40	36	32	28	21	14	7
Ү,с	67	60	53	46	39	35	31	27	20	13	6
	66	59	52	45	104 98 103 97	92 86 91 85	80 74 79 73	26	19	12	5
	65	58	51	44	102 96 101 95	90 84 89 83	78 72 77 71	25	18	11	4
	64	57	50	43	100 94 99 93	88 82 87 81	76 70 75 69	24	17	10	3
	63	56	49	42	38	34	30	23	16	9	2
	62	55	48	41	37	33	29	22	15	8	1

X,cm

ZDC calibration

Distribution of the RMS cluster width

Distribution of the square width

The ZDC was calibrated in 2015. The beam was irradiated with different modules. From the Figure (\mathbf{R}_{clust} , \mathbf{R}^{2}_{clust}) - selection criterion: $\mathbf{R}_{i} < 8 - 9$ cm

Estimate of energy release from the track

ZDC map

68	61	54	47	40	36	32	28	21	14	7
67	60	53	46	39	35	31	27	20	13	6
66	59	52	45	104 98 103 97	92 86 91 85	80 74 79 73	26	19	12	5
65	58	51	44	102 96 101 95	90 84 89 83	78 72 77 71	25	18	11	4
64	57	50	43	100 94 99 93	88 82 87 81	76 70 75 69	24	17	10	3
63	56	49	42	38	34	30	23	16	9	2
62	55	48	41	37	33	29	22	15	8	1

Criteria to the distance:

$$R_i < 9 \ cm$$
, $k = \sum_{i=0}^{m} \frac{1}{n}$

Total energy release in the circle

$$SumE_{ZDC} = \sum_{i=1}^{104} E_i \cdot k_i \cdot$$

 E_i - energy release of the i-th triggered module.

Distance: $R_i = \sqrt{(\text{Xextr} - \text{Xi})^2 + (\text{Yextr} - \text{Yi})^2}$, (**)

- Xi X coordinate of the random point of the i-th triggered module,
- Yi Y coordinate of the random point of the i-th triggered module.

24.10.2020

Summary

Done:

- \checkmark The match between the particle track and the module in ZDC is established;
- \checkmark The optimal criteria for the tracks have been selected;
- ✓ Determination of expected kinetic energy ranges(p, d);

Plan:

Search and study of the correlation between the distributions of energy release (E_{zdc}) and track energies(T_{kin} for p,d); Wait for Run – 8 \odot

Thank you for attention!

16