PID in the NICA experiment using machine learning techniques

MSc. Julio César Maldonado González Co-authors: Ph.D. Isabel Domínguez Jiménez, Ph.D. Pedro Luis Manuel Podesta Lerma, Ph.D. Ines Fernando Vega López

> Universidad Autónoma de Sinaloa MexNICA Collaboration

The XXVI International Scientific Conference of Young Scientists and Specialists (AYSS-2022)

October 25, 2022

Overview

- Data selection
 - Introduction
 - Methodology
 - Data selection
 - Feature selection
- Training and testing methods
 - Bayesian method
 - Neural Networks (NNs) for particle classification
 - Model comparison
 - Conclusions

Bethe-Bloch for heavy-ions

Signal dE/dx vs p in the MPD-TPC detector for Bi-Bi collisions of $\sqrt{s}=11$ GeV,

Figure: Protons, Kaons (red), and Pions (blue), for two normalized datasets of 1000 tracks, for low and high momentum.

Methodology

- Preparing data for three balanced classes for training and testing.
- Ranking and selecting variables (features).
- Analyzing data using MLP (RSNNS), DT (C5.0) and SVM (e1071) classifiers.
- Comparing methods with Bayesian method using confusion matrix

Simulation and reconstruction data

- Detector: MPD (TPC, TOF)
- Input file: rectestf140.root file (DST)
- Event generator: UrQMD
- Bi-Bi a 11 GeV (MB)
- of events: 10k
- Macro: CompareSpectra.C, anaDST.C

All particles P_t MC-MPD

Figure: P_T distribution for MC and reconstruction tracks.

All particles η MC-MPD

Figure: η distribution for MC and reconstruction tracks.

- Training dataset MPDTRACKSTR of 30k elements (tracks) selecting three classes (particles): Protons, pions, kaons.
- Testing dataset MPDTRACKSTE of 15k elements (tracks).

Feature selection

From dataset we have a feature list which describes the reconstruction tracks.

ID	Integer
TofBeta	Float
TofMass2	Float
dEdx	Float
TofHitIndex	Entero
TofFlag	Float
Chi2	Float
Pt	Float
Theta	Float
Phi	Float
Eta	Float
Charge	Float
P	Float
PDGID	Integer

Using TMVA libraries, we ranked each feature computing the separation, $\langle S^2 \rangle$,

$$\langle S^2 \rangle = \frac{1}{2} \int \frac{(y_S(y) - y_B(y))^2}{y_S(y) + y_B(y)} dy$$

 y_S and y_B are the PDFs of y for signal and background.

Rank	Feature	Separation
1	Charge	3.379e-01
2	dEdx	1.480e-02
3	Phi	1.398e-02
4	FirstPointX	1.334e-02
5	FirstPointY	1.201e-02
6	Р	1.184e-02
7	DCAGlobalX	1.146e-02
8	DCAX	1.130e-02
9	DCAGlobalY	1.087e-02
10	DCAY	1.060e-02
11	PhiError	1.045e-02
12	PtError	9.873e-03
13	TofBeta	8.765e-03
14	ThetaError	8.711e-03
15	Pt	8.297e-03

Bayesian method

The probability of a particle i, if s signal is observed,

$$P(i|s) = \frac{r(s|i)C_i}{\sum_k r(s|k)C_k}$$

r(s|i) probability density function of the observed signal s of the detector, if a particle $i(e, \mu, \pi, K, p, ...)$ is detected.

 C_i frecuency of the observed particle.

dE/dx histogram and fit

Frequency of the particle

Neural Networks (NNs) for particle classification (RSNNS)

Output format for a Neural Network of three classes:

0	1	2	Partícula
0	0	1	K^\pm
0	1	0	π^\pm
1	0	0	р

Using the function multiclass,

- ROC probability for a proton = 0.9678
- ROC probability for a pion = 0.9581
- ROC probability for a kaon = 0.8866

Confusion matrix for the three classes model

Selecting a threshold value fixed for the compare probability, we compute the True Positive, False Negative, True Negative and False Positive percentage

	TP %	FN %	TN %	FP %
р	96.22	3.78	98.18	1.82
π^{\pm}	90.38	9.62	94.89	5.11
K^{\pm}	85.72	14.28	95.15	4.85

Table: MLP model prediction

Bayesian Method, Multi-Layer Perceptron, Decision Tree and Support Vector Machine comparison

Selecting the dataset for $0.2 \le P < 1.0$

	Bayes	MLP	DT	SVM
TP	83.84 %	99.18 %	99.14 %	98.38 %
FN	16.16 %	0.82 %	0.86 %	1.62 %
TN	95.08 %	99.52 %	99.46 %	99.44 %
FP	4.92 %	0.48 %	0.54 %	0.56 %

Selecting the dataset for $1.8 \le P < 2.6$

	Bayes	MLP	DT	SVM
TP	0.8 %	90.38 %	89.54 %	93.18 %
FN	99.2 %	9.62 %	10.46 %	6.82 %
TN	99.37 %	94.89 %	94.63 %	93.24 %
FP	0.63 %	5.11 %	5.37 %	6.76 %

Table: Results for π classification.

Conclusions

- Bayesian method is only useful in the region of low-momentum $(1.8 \le P < 2.6)$.
- Confusion matrix and ROC computation show machine learning techniques have acceptable results in both regions, of low-momentum and high-momentum of the Bethe-Bloch distribution.
- Machine learning techinques allow us to implement a data classification for more than binomial classification (signal and background) and for more than two features (P and dEdx).

Thanks!