On the statistical accuracy of A_N for local polarimetry with π^0 in the SPD (a SpdRoot assessment)

Katherin Shtejer Díaz

Schematic view of the SPD

Inclusive π^0 production from pp interactions

Single Spin Asymmetry (SSA): $A_N^{\pi^0} \longrightarrow$ probes the spin structure of the proton.

In the early 70's was believed that SSA (A_N) was nearly vanishing in the framework of pQCD.

In 1991 the E704 experiment, with p^{\uparrow} at higher p_{\uparrow} values, extended the results on large $A_{\rm N}$.

$$A_{\rm N} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \qquad \qquad \begin{bmatrix} A_{\rm N} \text{ is a measure of beam polarization} \end{bmatrix}$$

 $p^{\uparrow} + p \rightarrow \pi + X$ $\mathbf{A}_{\mathbf{N}}$ 0.6 $\sqrt{s} = 19.4 \text{ GeV} (p_{beam} = 200 \text{ GeV/c})$ E704: Adams et al. Phsy. Lett. B264(1991)462 0.40.2 0 -0.2 À LEGEND -0.4 π^+ (p_T > 0.7 GeV/c) $(p_T > 0.5 \text{ GeV/c})$ π^{-} (p_T > 0.7 GeV/c) -0.6 0.4 0.5 0.6 0.7 0.8 0.9 0.3 XF

the

$$p + p \rightarrow \pi^0 + X$$

- SpdRoot version 4.1.3
- \Box Particle generator: Pythia 8 (number of events: 10^8)
- □ Minimum Bias: *SoftQCD:inelastic* ↔ inelastic, non diffractive events and diffractive topologies
- **G** Smeared vertex in $\Delta Z = \pm 30 \ cm$ (flat distribution)
- $\Box E_{min}^{\gamma} = 400 \text{ MeV} (\gamma : \text{reconstructed particle})$
- Monte Carlo truth is used to identify photons: the PDG code is obtained through a method implemented in the analysis macro to find the Monte Carlo particle corresponding to the reconstructed photon.
- Reconstructed photons detected in the ECAL Endcaps detId = +1 (endcapZ+) Z = +224.1 cm detId = -1 (endcapZ-) Z = -224.1 cm

□ ECAL endcap energy resolution $E \sim \frac{5.4\%}{\sqrt{E}}$ (estimated for $E_{\gamma} = 0 - 10$ GeV with $\theta = 10^{\circ} - 15^{\circ}$)

 \square π^0 are reconstructed from the M_{inv} of γ pairs

General characteristics

General characteristics

Extraction of A_N

- The spin dependent π^0 yields for each bin are extracted from the invariant mass spectra in different x_F sub-ranges for each ϕ bin.
- The invariant mass was fitted with a **polynomial** function for the background and a **normalized Gaussian** distribution representing the signal peak.

Estimation of π^0 yield in the ECAL endcaps

Estimation of π^0 yield in the ECAL endcaps

Both ECAL endcaps

Physics & MC Meeting, 06.07.2022

Katherin Shtejer

9

Azimuthal cosine modulation of π^0 yields in x_F intervals

Azimuthal cosine modulation of π^0 yields in p_T intervals

Physics & MC Meeting, 06.07.2022

Relative error for $A_{\rm N}$

By using the measured A_N from the E704 experiment at $\sqrt{s} = 19.4$ GeV, we can estimate the relative error of $\frac{\Delta A_N}{A_N}$ vs. x_F

 ΔA_N

SpdRoot

E704

$$\frac{\Delta A_N}{A_N} \sim \frac{\Delta P}{P}$$

 ΔA_N scaled to 10 min of data-taking (SPDRoot)

Relative of $A_{\rm N}$ error estimated for 10 min

The determination of the polarization is expected to be precise for $0.3 < x_F < 0.4$.

Katherin Shtejer

Estimated relative error of the polarization

-0.05

Taking the last 4 points ($0.3 \le x_F < 0.7$):

 $\frac{\Delta P}{P} \approx 0.0873 \quad 8.7\% \text{ (Experiment E704)} \qquad \begin{array}{l} \hline \text{The error of the beam polarization in the experiment E704 is} \\ \hline \text{setimated in 10\%, as reported in FERMILAB-Pub-91/15-E[E581,E704]} \end{array}$ $\begin{array}{l} \mathsf{MC-SpdRoot}\left(32\ \mathrm{s}\right) \quad \frac{\Delta P}{P} \approx 0.057646 \quad 5.76\ \% \\ \mathsf{MC-SpdRoot}\left(2\ \mathrm{m}\right) \quad \frac{\Delta P}{P} \approx 0.0297683 \quad 2.98\ \% \\ \mathsf{MC-SpdRoot}\left(5\ \mathrm{m}\right) \quad \frac{\Delta P}{P} \approx 0.0188271 \quad 1.88\ \% \\ \mathsf{MC-SpdRoot}\left(10\ \mathrm{m}\right) \quad \frac{\Delta P}{P} \approx 0.0133128 \quad 1.33\ \% \end{array} \right]$

0.7

Summary

- The inclusive $pp \rightarrow \pi^0 X$ reaction, detected in the ECAL Endcaps, is proposed to participate in the local polarimetry at SPD, by measuring and monitoring the transverse single spin asymmetry.
- The determination of the polarization is expected to be more precise, at least,
 for 0.3 < x_F < 0.4.
- From the asymmetry determination, the statistical accuracy of the beam polarization in 10 minutes is estimated in $\frac{\Delta P}{P} \sim 1.33\%$, from SPDRoot simulations, while a relative error of the polarization, of $\frac{\Delta P}{P} \sim 2.98\%$ can be predicted for 2 minutes.
- TODO:
- Estimate the systematic uncertainties
- Introduce the phase smearing in the cosine function
- Expand the energy range (\sqrt{s}) of this analysis