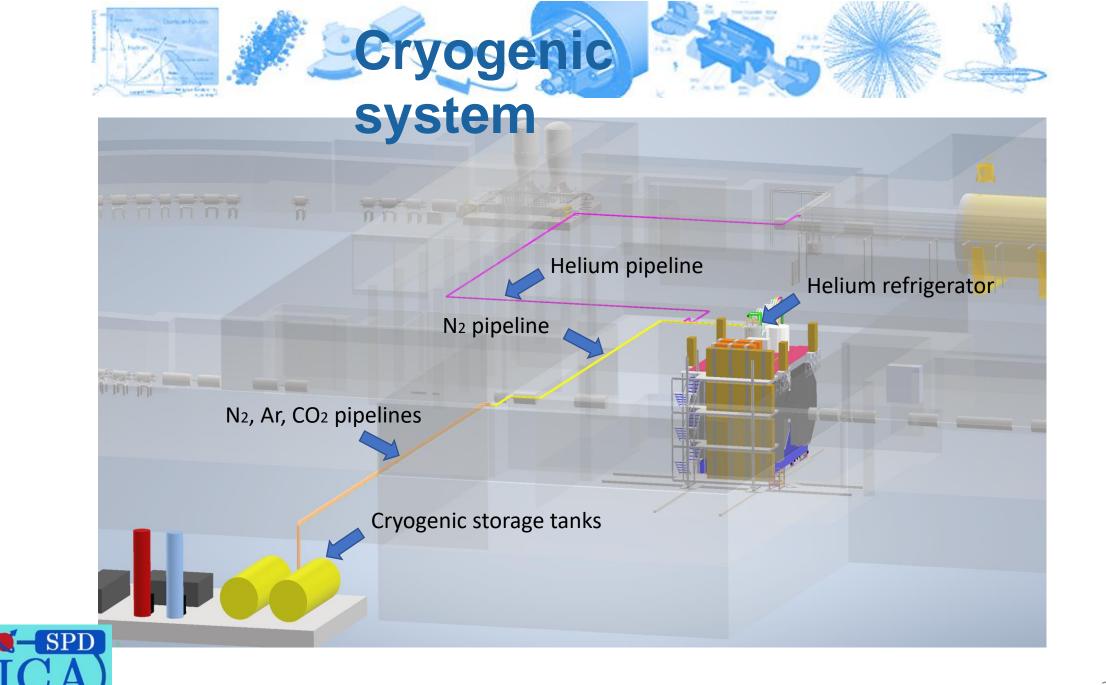


SPD cryogenic system

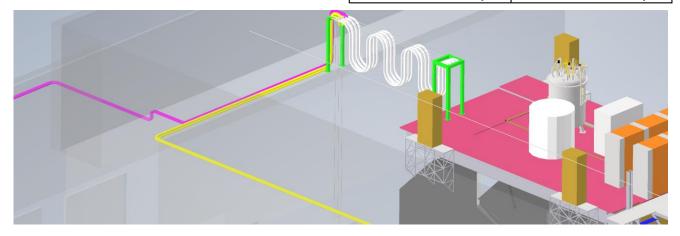


Outline

- 1. Cryogenic system
- 2. Cryogenic equipment
- 2.1. Helium system
- 2.2. Nitrogen system
- 2.3. Other systems
- 3. Steps creation & costs
- 4. Conclusions

2.1. Helium system

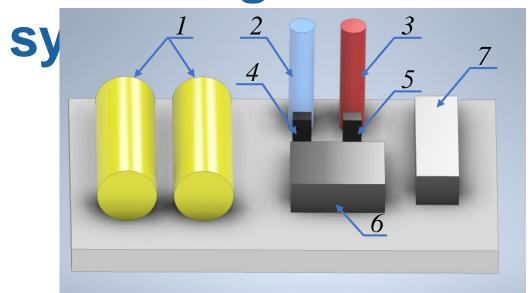
Refrigerator



100 W @ 4.5 K (140 l/h)	
16 g/s	
3.0 Mpa	
2000 mm x 3500 mm	

Pipeline

S


Rigid pipes	Flexible pipes
220 m	40 m
ø60 mm high pr.	ø60 mm high pr.
ø100 mm low pr.	ø100 mm low pr.

2.2. Nitrogen

Cryogenic tanks

1 platfostorage tanks for LN2, 2 -Storage tank for LAr, 3 - Storage tank for LCO₂, 4 - Evaporator for SPD LAr, 5 - Evaporator for LCO₂, 6 -Storage bottles, 7 - Equipment

Pipeline

Cryogeni line

 $LN_2 - 120 \text{ m}$ (rigid tube) LN₂ - 40 m (rigid tube) (flexible tube)

Warm line

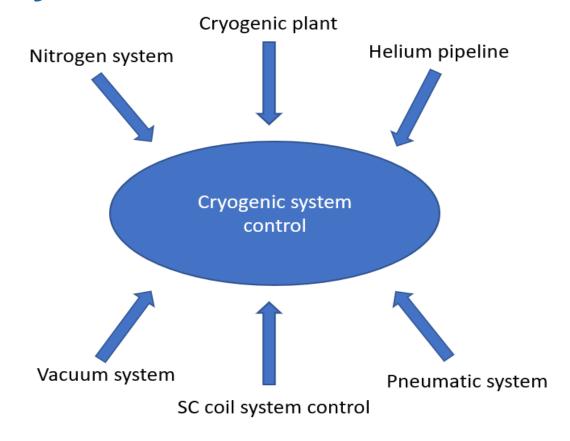
Ar - 100 m(rigid tube) $N_2 - 100 \text{ m}$ $CO_2 - 100 \text{ m}$ (rigid tube)

2.3. Other systems

- Vacuum system

Diffusion vapor pump and pumping station with two foreline pumps

- Pneumatic system

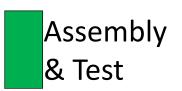


2.3. Other systems

- Cryogenic system control

3. Estimating the costs and power consumption of systems

	Name of system	Costs, к\$	Power, kW
1	Cryogenic plant	3 330	2
2	Helium pipeline	500	-
3	Nitrogen system	1 500	2
4	Vacuum subsystem	500	14
5	Pneumatic subsystem	50	3
6	Cryogenic system control	500	2
PD	Total	6 380	23



Steps creation																								
	2022			2023				2024				2025				2026				2027				
SPD			III	IV			III	IV				IV			Ш	IV				IV			III	IV
Cryogenic plant																								
Helium pipeline																								
Nitrogen system																								
Vacuum system																								
Pneumatic																								
system																								
Cryogenic system																								
control																								

4. Conclusions

The cooling capacity, mass flow rate and working cycles of the cryogenic plant are calculated.

The development of technical tasks for a cryogenic plant and a platform for cryogenic storage tanks is in the active phase.

The work is carried out according to the plan.

Thank for your attention!

